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Abstract

This study presents a solution method to analyze the geometrically nonlinear response of a patch-repaired flat panel
(skin) with a cutout under general loading conditions. The effect of induced stiffening due to tensile loading on the in-
plane and, particularly, the out-of-plane behaviors of the patch-repaired skin are investigated. The damage to the skin is
represented in the form of a cutout under the patch. The patch with tapered edges is free of external tractions. The skin
is subjected to general boundary and loading conditions along its external edge. The solution method provides the
transverse shear and normal stresses in the adhesive between the skin and the patch, and in-plane and bending stresses
in the patch and skin. Both the patch and skin are made of linearly elastic composite laminates, and the adhesive
between them is homogeneous and isotropic, exhibiting a bi-linear elastic behavior. Modified Green�s strain–displace-
ment relations in conjunction with von Karman assumptions are employed in determining the in-plane strains in the
skin and patch; however, the transverse shear strains in the adhesive are determined based on the shear-lag theory.
The present solution method utilizes the principle of virtual work in conjunction with complex potential functions.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The objectives of a patch repair are to restore the static strength and durability of a structure and to
decrease stress concentrations caused by damage in the form of a circular or an elliptical cutout. An essen-
tial part of the repair design is the prediction of the strength of the patch-repair and its effectiveness in
reducing the stress concentrations around the cutout. The strength of a bonded patch repair depends on
the surface preparation, geometries of the patch and damage area, material properties, and the adhesive
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thickness and its possible variation and exposure to adverse environments. Furthermore, reduction of the
transverse and peel stress concentrations along the edges of the adhesive is important in order to prevent
premature failure of the bonded repair. Peak transverse shear stresses in the adhesive can be reduced by
tapering the patch thickness near its edges.

A majority of the previous analytical investigations on the analysis of bonded patch repair of composite
skin are based on the small deflection theory, in which the strain measure does not include the higher-order
displacement terms. However, under uniaxial loading, the bending stiffness of both the patch and skin in-
creases due to the induced stiffness arising from tensile loading, thus affecting the bending deformation sig-
nificantly. This stiffening effect can only be included by considering the nonlinear (higher-order)
displacement terms in the strain measure. Although there are only a few, recent investigations on bonded
patch repair analysis include the effect of geometric nonlinearity (Klug and Sun, 1998; Naboulsi and Mall,
1998; Andruet et al., 2001; Tong and Xiannian, 2003; Duong and Yu, 2003). In most of these studies, either
a commercially available finite element program is utilized (Klug and Sun, 1998), or special finite element
models are developed based on two-dimensional elements (Naboulsi and Mall, 1998), or combined two-
and three-dimensional elements with appropriate constraint conditions between the adhesive and adherents
are used (Andruet et al., 2001; Tong and Xiannian, 2003).

In finite element analysis, the adhesive requires a highly refined three-dimensional mesh in order to keep
the proper aspect ratio between the elements in adherends and adhesives. In the case of geometric and mate-
rial nonlinearities, the iterative solution of the governing equations in which the global stiffness matrix is
repeatedly calculated, the three-dimensional finite element analysis of the entire domain becomes compu-
tationally demanding. Therefore, both global and local models become necessary as performed by Barut
et al. (2002) to capture acceptable accuracy. Thus, it is beneficial to have an efficient special-purpose anal-
ysis method that can be used to conduct extensive parametric studies in a timely manner and at relatively
low computational costs. An analytic study was also performed for the geometrically nonlinear analysis of
bonded patch repairs of infinitely long skin with a crack (Duong and Yu, 2003) for which the adhesive is
assumed to be rigid, thus excluding the deformation in the adhesive. In all of these patch-repair studies, an
untapered patch is bonded over a crack that represents the damage rather than a cutout.

This study extends the approach by Barut et al. (2002) to address the geometrically nonlinear behavior of
a composite skin with a cutout repaired by bonding a tapered composite patch. In particular, it investigates
the effects of stress stiffening, thickness of the tapered patch, and the patch lamination, as well as the bi-
linear elastic behavior of the adhesive on the in-plane stresses in the skin and patch and the transverse nor-
mal and transverse shear stresses in the adhesive. The tapered patch thickness becomes especially important
in reducing the stress concentrations near the adhesive edges. The isotropic adhesive exhibits either a linear
elastic or a bi-linear elastic behavior. The damage to the skin is represented in the form of a circular cutout.

The nonlinear governing equations are derived based on the principal of virtual work in conjunction
with a Rayleigh–Ritz semi-analytical solution method. In order to demonstrate the capabilities of the pres-
ent analysis method, two patch-repair configurations are considered for the numerical results. The first
problem investigates the effect of a tapered aluminum patch bonded over a circular cutout in an aluminum
skin having a linear elastic adhesive material behavior. The second problem investigates the effect of a bi-
linear elastic adhesive behavior on the repair of a composite skin having a circular cutout with an untapered
composite patch.
2. Problem statement

The patch-repair configuration shown in Fig. 1 consists of a composite patch bonded to the skin with a
circular or an elliptical hole representing the damage. The adhesive thickness is uniform. The elliptical cut-
out, which can be located arbitrarily in the skin under the patch, has a semi-major axis and a semi-minor



Fig. 1. Geometry and loading of a bonded patch–repaired skin with an elliptical cutout.
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axis of length a and b, respectively. Two coordinate systems whose origins coincide with the center of the
cutout are shown in Fig. 1. The global structural coordinates are given by (x,y,z), and the principal coor-
dinates of the elliptical cutout are given by (xs,ys,zs). The orientation of the cutout with respect to the glo-
bal structural coordinates is defined by the angle ws. Although not required, a local coordinate system,
(xp,yp,zp), with orientation angle wp is also attached to the patch for consistency in the formulation.

As shown in Fig. 1, CðsÞ
‘ represents the ‘th boundary segment of the entire boundary. The unit normal to

the ‘th boundary segment is represented by nðsÞ‘ , with components nðsÞx‘ and nðsÞy‘ in the x-and y-directions,
respectively. The unit normal, nðsÞ‘ , makes an angle, /‘, with respect to the positive x-axis, as shown in
Fig. 1. Similarly, the unit normals to the kth boundary, CðpÞ

k ¼ CðaÞ
k , of the patch and adhesive are denoted

by nðpÞk and nðaÞk , respectively.
The patch is attached to the skin by the adhesive and, therefore, its external boundaries are traction-free.

The exterior edges of the skin are subjected to both in-plane tractions and bending moments. The in-plane
external tractions include components tx, ty, and tz, and the external bending tractions include components
mx and my. The traction components are defined with respect to the (x, y, z) structural coordinates, and
their positive-valued directions are shown in Fig. 1. The global displacement components in the x-, y-,
and z-directions are denoted by U ðdÞ

x ; U ðdÞ
y , and U ðdÞ

z , with d = s, p, a, respectively. The superscripts �p�,
�s�, and �a� denote the patch, skin, and adhesive, respectively. Symmetrically laminated patch and skin
are made of specially orthotropic layers, and each layer has an orientation angle, hðdÞ

k , defined with respect
to the positive x-axis (Fig. 1). Each layer has thickness tðdÞk , elastic moduli EðdÞ

L and EðdÞ
T , shear modulus GðdÞ

LT,
and Poisson�s ratio mðdÞLT, where L and T are the longitudinal (fiber) and transverse principal material direc-
tions, respectively.
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The adhesive material is isotropic, homogeneous, and elastic, with a bi-linear relation between the effec-
tive transverse shear stress, sðaÞeff , and effective transverse shear strain, cðaÞeff , as shown in Fig. 2. The effective
transverse shear stress and strain are defined by
sðaÞeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðaÞ2
xz þ rðaÞ2

yz

q
ð1aÞ
and
cðaÞeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðaÞ

2

xz þ cðaÞ
2

yz

q
ð1bÞ
in which rðaÞ
xz ; r

ðaÞ
yz and cðaÞxz ; c

ðaÞ
yz represent the components of the transverse shear stress and strain, respec-

tively, in the adhesive. As shown in Fig. 2, the initial shear modulus of the bi-linear adhesive behavior is
denoted by GðaÞ

1 (it reduces to GðaÞ
2 after the characteristic transverse shear strain, cðaÞc ) and has a Poisson�s

ratio of m(a). With these parameters, the bi-linear relationship between the effective transverse shear stress,
sðaÞeff , and effective transverse shear strain, cðaÞeff , can be expressed as
sðaÞeff ¼ GðaÞ
1 cðaÞeff 1� H cðaÞeff � cðaÞc

� �h i
þ GðaÞ

1 cðaÞc þ GðaÞ
2 cðaÞeff � cðaÞc

� �h i
H cðaÞeff � cðaÞc

� �
; ð2Þ
where HðcðaÞeff � cðaÞc Þ is the Heaviside step function.
In accordance with this relationship, the transverse shear stresses, rðaÞ

az , and strains, cðaÞaz , are related by
rðaÞ
az ¼ GðaÞ

eff c
ðaÞ
az with a ¼ x; y ð3Þ
in which the parameter GðaÞ
eff represents the effective shear modulus of the adhesive defined as
GðaÞ
eff ¼

sðaÞeff

cðaÞeff

: ð4Þ
Fig. 2. Bi-linear elastic material model for the adhesive.



Fig. 3. Reference planes for kinematic relations of the patch, skin, and adhesive.

5278 E. Oterkus et al. / International Journal of Solids and Structures 42 (2005) 5274–5306
Furthermore, the transverse normal stress, rðaÞ
zz , and strain, eðaÞzz , in the adhesive are related by
rðaÞ
zz ¼ EðaÞ

eff e
ðaÞ
zz ð5Þ
in which EðaÞ
eff is the effective Young�s modulus expressed as
EðaÞ
eff ¼ 2GðaÞ

eff ð1þ mðaÞÞ: ð6Þ
The thicknesses of the skin and adhesive are uniform and denoted by h(s) and 2h(a), respectively. As
shown in Fig. 3, the patch can be tapered near the edges with a variable thickness h(p)(x,y). Also shown
in Fig. 3 are the reference planes of the skin and patch, denoted by z(d) (d = s,p), and the fact that they
do not coincide with their mid-surfaces. The reason for the choice of an eccentric reference location is
apparent for the tapered patch because a flat plane exists only at its bottom surface. Although the mid-sur-
face of the skin could serve as a reference plane, the choice of its top surface as the reference plane leads to
simplified expressions for the transverse shear strain components in the adhesive. Due to the choice of these
eccentric locations for reference planes for the adherents, the material property matrix includes the material
coupling effects. As for the adhesive, its mid-surface, denoted by z(a), serves as the reference plane in
describing the shear-lag model.

The problem posed here concerns the development of an analytical method to determine the displace-
ment and stress fields in the repair of a skin with a hole by bonding a tapered patch over it while including
the effect of geometric nonlinearity and bi-linear elastic adhesive material behaviors.
3. Solution method

The present nonlinear analysis method is based on the principle of virtual work in conjunction with a
Rayleigh–Ritz approach. The displacement components are approximated in terms of the superposition
of local and global functions, �uðdÞa and ��uðdÞa , respectively, as
uðdÞa ¼ �uðdÞa þ ��uðdÞa ð7Þ
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with d = p, s and a = x,y,z. The local displacement functions, �uðdÞa , are expressed as Laurent series in terms
of complex functions in the form
�uðdÞx ¼ 2Re
X2
k¼1

dðdÞ
xk

XNd2

n¼�Nd1

aðdÞ
nk UðdÞ

nk zðdÞek

� �" #
; ð8aÞ

�uðdÞy ¼ 2Re
X2
k¼1

dðdÞ
yk

XNd2

n¼�Nd1

aðdÞ
nk UðdÞ

nk zðdÞek

� �" #
; ð8bÞ

�uðdÞz ¼ 2Re
X2
k¼1

XNd2

n¼�Nd1

bðdÞ
nk F

ðdÞ
nk zðdÞjk

� �" #
ð8cÞ
with
dðdÞ
xk ¼ coswðdÞpðdÞk � sinwðdÞqðdÞk ; ð9aÞ

dðdÞ
yk ¼ sinwðdÞpðdÞk þ coswðdÞqðdÞk ð9bÞ
in which the explicit definitions of complex functions UðdÞ
nk ðz

ðdÞ
ek Þ and F ðdÞ

nk ðz
ðdÞ
jk Þ and the complex constants pðdÞk

and qðdÞk are explicitly given in the Appendix A. The parameters Nd1 and Nd2, with d = p,s, define the extent
of the complex series, and the parameter Np1 is set to 0 because there is no cutout in the patch. In these
series, aðdÞ

nk and bðdÞ
nk are the unknown complex coefficients. These local functions satisfy the in-plane and

bending equilibrium equations of a laminate exactly, as described by Madenci et al. (2001).
The global displacement functions, ��uðdÞa , are expressed as a series in terms of Chebyshev polynomials in

reference to the global coordinates (x,y in the form
��uðdÞa ¼
XMd

m¼0

Xm
n¼0

cðdÞaðmnÞTmðxÞT nðyÞ ð10Þ
in which cðdÞaðmnÞ, with d = p, s and a = x, y, z, are the unknown real coefficients. The parameter Md specifies
the extent of the series.

These local and global displacement functions can be expressed in matrix form as
�uðdÞx ¼ V
ðdÞT

x aðdÞ

�uðdÞy ¼ V
ðdÞT

y aðdÞ

�uðdÞz ¼ V
ðdÞT

z bðdÞ

and

��uðdÞx ¼ �V
ðdÞT

x cðqÞx

��uðdÞy ¼ �V
ðdÞT

y cðqÞy

��uðdÞz ¼ �V
ðdÞT

z cðqÞz

ð11a; bÞ
in which the vectors a(d) and b(d) contain the real and imaginary parts of the unknown coefficients aðdÞ
nk and

bðdÞ
nk , respectively. The vectors cðdÞa , with a = x, y, z, contain the real unknown coefficients cðdÞamn. The known

vectors V
ðdÞ
a and V

ðdÞ
a and their corresponding unknown coefficient vectors a(d) and b(d) are defined explicitly

in the Appendix A.
In matrix form, the approximate displacement representations given in Eq. (7) are rewritten as
uðdÞx ¼ VðdÞT
x qðdÞ;

uðdÞy ¼ VðdÞT
y qðdÞ;

uðdÞz ¼ VðdÞT
z qðdÞ

ð12Þ
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in which the known vectors VðdÞ
a , with a = x, y, z, are defined as
VðdÞT
x ¼ V

ðdÞ
x ;V

ðdÞ
x ; 0; 0; 0


 �
; ð13aÞ

VðdÞT
y ¼ V

ðdÞ
y ; 0;V

ðdÞ
y ; 0; 0


 �
; ð13bÞ

VðdÞrmT

z ¼ 0; 0; 0;V
ðdÞ
z ;V

ðdÞ
z


 �
: ð13cÞ
In Eq. (12), the unknown vector q(d) is defined as
qðdÞ
T ¼ aðdÞT ; cðdÞ

T

x ; cðdÞ
T

y ; bðdÞT ; cðdÞ
T

z

n o
: ð14Þ
Note that the series representation of the displacement components is not required to satisfy any type of
kinematic admissibility.

3.1. Kinematic relations

The patch and skin interact through the adhesive, which sustains transverse and shear deformations but
not in-plane deformation. Both the patch and skin are subjected to in-plane and transverse deformations
but not shear deformation. Also, the transverse normal and shear strain components are disregarded in
the patch and skin because they are thin. Therefore, the in-plane strain components in the adhesive and
the transverse normal and shear strain components in the patch and skin are not included in the derivation
of the kinematic relations.

In accordance with the Kirchhoff plate theory, the global displacement components, U ðdÞ
x ;U ðdÞ

y , and U ðdÞ
z ,

in the patch and the skin are defined as
U ðdÞ
a ðx; y; zÞ ¼ uðdÞa ðx; yÞ � fðdÞhðdÞuðdÞz;a ; ð15aÞ

U ðdÞ
z ðx; y; zÞ ¼ uðdÞz ðx; yÞ ð15bÞ
for which d = p,s and a = x,y; the displacement components, uðdÞx ; uðdÞy , and uðdÞz , are defined on the reference
surfaces with respect to the global Cartesian coordinates (x,y,z), (Fig. 3). A subscript after a comma indi-
cates differentiation with respect to the variable. As shown in Fig. 3, the coordinate f(d) located on each of
the reference planes is defined as
fðdÞ ¼ z� zðdÞ

hðdÞ
with d ¼ p; s ð16Þ
and varies in the range �1f(s) 6 0 in the skin and 0 6 f(p) 6 1 in the patch. The thicknesses of the patch and
skin are specified by h(d), and the location of the reference planes with respect to the global coordinate sys-
tem (x,y,z) are defined by z(d), with d = s, p, as shown in Fig. 3.

3.2. Strain–displacement relations

The strain measures for the skin and patch are based on the modified form of Green�s nonlinear strain–
displacement relations in conjunction with von Karman assumptions for large deformation of plates (Fung

and Tong, 2001). Therefore, the strain components in the skin and patch, eðdÞab (d = p,s; a,b = x,y), are ex-
pressed in terms of the displacement components as
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eðdÞxx ¼ uðdÞx;x � fðdÞhðdÞuðdÞz;xx þ
1

2
uðdÞz;x

� �2
; ð17aÞ

eðdÞyy ¼ uðdÞy;y � fðdÞhðdÞuðdÞz;yy þ
1

2
uðdÞz;y

� �2
; ð17bÞ

eðdÞxy ¼ 1

2
uðdÞx;y þ uðdÞy;x � 2fðdÞhðdÞuðdÞz;xy

� �
þ 1

2
uðdÞz;x u

ðdÞ
z;y : ð17cÞ
In accordance with the von Karman nonlinear plate theory, the out-of plane displacements are on the order
of the thickness, h(d), of the skin and patch and the derivatives of the in-plane displacement components are
much smaller than those of the out-of-plane displacement components. These expressions for the strain
components can be rewritten as
eðdÞxx ¼ eðdÞxx � fðdÞhðdÞjðdÞ
xx þ 1

2
ðuðdÞz;x Þ

2
; ð18aÞ

eðdÞyy ¼ eðdÞyy � fðdÞhðdÞjðdÞ
yy þ 1

2
uðdÞz;y

� �2
; ð18bÞ

eðdÞxy ¼ 1

2
cðdÞxy þ 1

2
fðdÞhðdÞjðdÞ

xy þ 1

2
uðdÞz;x u

ðdÞ
z;y ð18cÞ
in which
eðdÞxx ¼ uðdÞx;x ; jðdÞ
xx ¼ �uðdÞz;xx; ð19a;bÞ

eðdÞyy ¼ uðdÞy;y ; jðqÞ
yy ¼ �uðqÞz;yy ; ð19c;dÞ

cðdÞxy ¼ uðdÞx;y þ uðdÞy;x ; jðdÞ
xy ¼ �2uðdÞz;xy ; ð19e;fÞ
where eðdÞxx ; eðdÞyy , and cðdÞxy represent the in-plane strain resultants and jðdÞ
xx ; jðdÞ

yy , and jðdÞ
xy represent the bending

strain (curvature) resultants on the reference surfaces. Also, the in-plane and bending (curvature) strain
resultants constitute the components of the linear part of the in-plane strain, eðdÞL , and curvature, jðdÞ

L , vec-
tors in the form
eðdÞ
T

L ¼ eðdÞxx ; e
ðdÞ
yy ; c

ðdÞ
xy

n o
¼ uðdÞx;x ; u

ðdÞ
y;y ; u

ðdÞ
x;y þ uðdÞy;x

n o
; ð20aÞ

jðdÞT
L ¼ jðdÞ

xx ; j
ðdÞ
yy ; j

ðdÞ
xy

n o
¼ �uðdÞz;xx;�uðdÞz;yy ;�2uðdÞz;xy

n o
: ð20bÞ
Similarly, the nonlinear terms appearing in the strain components, eðdÞab ða; b ¼ x; yÞ, are included in the non-
linear part of the in-plane strain resultant vector, eðdÞN , in the form
eðdÞ
T

N ¼ 1

2
ðuðdÞz;x Þ

2
;
1

2
ðuðdÞz;y Þ

2
; uðdÞz;x u

ðdÞ
z;y


 �
: ð21Þ
Although the bending deformations (curvatures) are only linearly related to the out-of-plane displace-
ment component, uðdÞz , for consistency, a zero-valued vector is employed to represent the nonlinear part
of the curvature vector, jðdÞ

N , as
jðdÞ
N ¼ f0; 0; 0g: ð22Þ
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Substituting for the derivatives of the displacement components from Eq. (12), the linear and nonlinear
parts of the in-plane strain resultant and curvature vectors can be expressed as
eðdÞL ¼ LðdÞ
eL
qðdÞ; jðdÞ

L ¼ LðdÞ
jL
qðdÞ; ð23a;bÞ

eðdÞN ¼ LðdÞ
eN
ðqðdÞÞqðdÞ; jðdÞ

N ¼ 0; ð23c;dÞ
where 2 3

LðdÞ

eL
¼

VðdÞT
x;x

VðdÞT
y;y

VðdÞT
x;y þ VðdÞT

y;x

6664
7775; ð24aÞ

LðdÞ
jL

¼ �

VðdÞT
z;xx

VðdÞT
z;yy

2VðdÞT
z;xy

2
6664

3
7775 ð24bÞ
and
LðdÞ
eN
ðqðdÞÞ ¼ 1

2

uðdÞz;xV
ðdÞT
z;x

uðdÞz;yV
ðdÞT
z;y

uðdÞz;xV
ðdÞT
z;y þ uðdÞz;yV

ðdÞT
z;x

2
6664

3
7775: ð24cÞ
The vectors of strain resultants defined in Eq. (23) can be combined in a compact form as
eðdÞa ¼ LðdÞ
a qðdÞ with a ¼ L;N; ð25Þ
where
eðdÞ
T

a ¼ eðdÞ
T

a ; jðdÞT
a

n o
; ð26aÞ

L
ðdÞ
L ¼

LðdÞ
eL

LðdÞ
jL

" #
; ð26bÞ

L
ðdÞ
N ðqðdÞÞ ¼ LðdÞ

eN
ðqðdÞÞ
0

" #
: ð26cÞ
Furthermore, the linear and nonlinear parts of the strain vectors, eðdÞL and eðdÞN , can be added to form the
total strain vector as
eðdÞ ¼ e
ðdÞ
L þ e

ðdÞ
N ¼ L

ðdÞ
L þ L

ðdÞ
N ðqðdÞÞ

h i
qðdÞ ¼ BðdÞðqðdÞÞqðdÞ; ð27Þ
where
BðdÞðqðdÞÞ ¼ L
ðdÞ
L þ L

ðdÞ
N qðdÞ
� �

: ð28Þ
For the adhesive between the patch and the skin, the displacement components are assumed to vary linearly
through the thickness. In order to ensure displacement continuity among the patch, adhesive, and skin, the
displacement components for the adhesive are expressed as
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U ðaÞ
a ðx; y; zÞ ¼ 1

2
U ðpÞ

a ðx; y; 0Þ þ U ðsÞ
a ðx; y; 0Þ

� �
þ 1

2

ðaÞ
U ðpÞ

a ðx; y; 0Þ � U ðsÞ
a ðx; y; 0Þ

� �
ð29Þ
with a = x, y, z. Although the adhesive between the patch and skin undergoes the same magnitude of in-
plane and transverse displacements as those of skin and the patch, the strain measure is based on a linear
shear-lag model in which the transverse shear strain and the normal strain components in the adhesive are
expressed in terms of the displacements in Eq. (29) as
cðaÞaz ¼ 1

2hðaÞ
U ðpÞ

a ðx; y; 0Þ � U ðsÞ
a ðx; y; 0Þ

� �
þ 1

2
ð1þ fðaÞÞU ðpÞ

z;a ðx; y; 0Þ þ ð1� fðaÞÞU ðsÞ
z;aðx; y; 0Þ

h i
; ð30aÞ

eðaÞzz ¼ 1

2hðaÞ
U ðpÞ

z ðx; yÞ � U ðsÞ
z ðx; yÞ

� �
ð30bÞ
with a = x,y. The expressions for the transverse shear strain components, cðaÞaz ða ¼ x; yÞ, are simplified to
cðaÞaz ¼ 1

2hðaÞ
U ðpÞ

a ðx; y; 0Þ � U ðsÞ
a ðx; y; 0Þ

� �
ð31Þ
under the assumption that
U ðdÞ
a � hðaÞU ðdÞ

z;b ða;b ¼ x; y; d ¼ s; pÞ ð32Þ
because the adhesive is an extremely thin layer.
Substituting for the displacement component evaluated at f(d) = 0 for d = p,s (the reference surface loca-

tions of the adherents) leads to
cðaÞaz ¼ 1

2hðaÞ
uðpÞa ðx; yÞ � uðsÞa ðx; yÞ
� �

with a ¼ x; y; ð33aÞ

eðaÞzz ¼ 1

2hðaÞ
uðpÞz ðx; yÞ � uðsÞz ðx; yÞ
� �

: ð33bÞ
Finally, substituting from Eq. (12) for the displacement components in Eq. (33) leads to the strain vector
containing the transverse shear and normal strain components in the adhesive in matrix notation as
eðaÞ ¼ LðpÞ
a qðpÞ � LðsÞ

a q
ðsÞ; ð34Þ
where
eðaÞ
T ¼ cðaÞxz ; c

ðaÞ
yz ; e

ðaÞ
zz

n o
ð35Þ
and the matrices LðpÞ
a and LðsÞ

a are defined as
LðdÞ
a ¼ 1

2hðaÞ

VðdÞT
x

VðdÞT
y

VðdÞT
z

2
664

3
775 with d ¼ p; s: ð36Þ
3.3. Stress–strain relations

The external in-plane loads acting along the boundary of the skin result not only in in-plane stresses but
also in bending moments in both the patch and skin due the eccentricity between the mid-surfaces of the
skin and patch and their interaction with the adhesive. The peeling stress in the adhesive is primarily
due to the bending deformations arising from this load eccentricity.
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The constitutive relations for both the skin and patch are based on the classical laminate theory, in which
the stress resultants and moments are related to the strain resultants and curvatures in the form
NðsÞ

MðsÞ

( )
¼ AðsÞ BðsÞ

BðsÞ DðsÞ

" #
eðsÞ

jðsÞ

( )
; ð37Þ
where
AðsÞ
ij ¼ hðsÞ

XNs

k¼1

fðsÞkþ1 � fðsÞk

� �
Q

ðsÞ
ijðkÞ;

BðsÞ
ij ¼ 1

2
hðsÞ

2XNs

k¼1

fðsÞ
2

kþ1 � fðsÞ
2

k

� �
Q

ðsÞ
ijðkÞ;

DðsÞ
ij ¼ 1

3
hðsÞ

3XNs

k¼1

fðsÞ
3

kþ1 � fðsÞ
2

k

� �
Q

ðsÞ
ijðkÞ

ð38Þ
with
fðsÞk ¼ zk � zðsÞ

hðsÞ
ðk ¼ 1; . . . ;Ns and zðsÞ � hðsÞ 6 zk 6 zðsÞÞ ð39Þ
and
NðpÞ

MðpÞ

( )
¼ AðpÞðx; yÞ BðpÞðx; yÞ

BðpÞðx; yÞ DðpÞðx; yÞ

" #
eðpÞ

jðpÞ

( )
; ð40Þ
where
AðpÞ
ij ðx; yÞ ¼ hðpÞðx; yÞ

XNs

k¼1

fðpÞkþ1 � fðpÞk

� �
Q

ðpÞ
ijðkÞ;

BðpÞ
ij ðx; yÞ ¼ 1

2
hðpÞðx; yÞ
� �2XNs

k¼1

fðpÞ
2

kþ1 � fðpÞ
2

k

� �
Q

ðpÞ
ijðkÞ;

DðpÞ
ij ðx; yÞ ¼ 1

3
hðpÞðx; yÞ
� �3XNs

k¼1

fðpÞ
3

kþ1 � fðpÞ
2

k

� �
Q

ðpÞ
ijðkÞ

ð41Þ
with
fðpÞk ¼ zkðx; yÞ � zðpÞ

hðpÞðx; yÞ
ðk ¼ 1; . . . ;Ns and zðpÞzkzðpÞ þ hðpÞÞ: ð42Þ
In Eqs. (37) and (40), the matrices A(d), D(d), and B(d) (d = s,p) are associated with in-plane, bending, and
coupled in-plane and bending behaviors of the adherents, and Q

ðdÞ
ijðkÞ (d = s,p) are the coefficients of the re-

duced stiffness matrix of the kth ply defined in the global x–y coordinate system. Note that the tapered
patch thickness, h(p), varies as a function of the (x–y) coordinates. Hence, the material property matrices
associated with the patch, A(p), B(p), and D(p), are dependent on the plane coordinates (x�y) while those
associated with the skin remain uniform.

Furthermore, the ratio of the ply thickness to the patch thickness is assumed to be constant, i.e.,
tðpÞk ðx; yÞ=hðpÞðx; yÞ ¼ �tðpÞk ¼ constant. In this case, the material property matrices, A(p), B(p), and D(p), become
dependent only on the patch thickness, h(p) (x, y).
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The relations given in Eqs. (37) and (40) can be compacted in the form
sðdÞ ¼ EðdÞeðdÞ with d ¼ p; s ð43Þ

in which s(d), E(d), and e(d) are defined as
sðdÞ
T ¼ NðdÞT ;MðdÞT
n o

; ð44aÞ

EðdÞ ¼ AðdÞ BðdÞ

BðdÞ DðdÞ

" #
; ð44bÞ

eðdÞ
T ¼ eðdÞ

T

; jðdÞT
n o

: ð44cÞ

With the representation of e(d) in Eq. (27), the stress–strain relations given in Eq. (43) are re-expressed as
sðdÞ ¼ EðdÞBðdÞðqðdÞÞqðdÞ: ð45Þ

Because the adhesive does not sustain any in-plane deformation, the in-plane stress components,

rðaÞ
xx ; rðaÞ

yy , and rðaÞ
xy , are disregarded. The transverse shear stresses, rðaÞ

xz and rðaÞ
yz , and the transverse normal

stress, rðaÞ
zz , are related to the corresponding strain components through a bilinear relation as
sðaÞ ¼ EðaÞeðaÞ; ð46Þ

where
sðaÞ
T ¼ hðaÞ rðaÞ

xz ; r
ðaÞ
yz ; r

ðaÞ
zz

n o
; ð47aÞ

eðaÞ
T ¼ cðaÞxz ; c

ðaÞ
yz ; e

ðaÞ
zz

n o
; ð47bÞ

EðaÞðqðsÞ; qðpÞÞ ¼
GðaÞ

eff ðqðsÞ; qðpÞÞ 0 0

0 GðaÞ
eff ðqðsÞ; qðpÞÞ 0

0 0 EðaÞ
eff ðqðsÞ; qðpÞÞ

2
664

3
775 ð47cÞ
in which the expressions for GðaÞ
eff ðqðsÞ; qðpÞÞ ¼ GðaÞ

eff ðc
ðaÞ
eff Þ and EðaÞ

eff ðqðsÞ; qðpÞÞ ¼ EðaÞ
eff ðc

ðaÞ
eff Þ are defined in Eqs. (4)

and (6), respectively.
Substituting for the expression for e(a) from Eq. (34) permits the stress–strain relations given in Eq. (46)

to be expressed in terms of the unknowns of the skin and patch components as
sðaÞ ¼ EðaÞðqðsÞ; qðpÞÞ LðpÞ
a qðpÞ � LðsÞ

a q
ðsÞ� �

: ð48Þ
3.4. Boundary conditions

Along the ‘th segment of the skin boundary, CðsÞ
‘ , as shown in Fig. 1, the prescribed displacement com-

ponents normal and tangent to the boundary (ð‘ÞûðsÞn ; ð‘ÞûðsÞt , and ð‘ÞûðsÞz ) and the slope normal to the bound-
ary (ð‘ÞûðsÞz;n) can be imposed as
uðsÞn ¼ ð‘ÞûðsÞn ;

uðsÞt ¼ ð‘ÞûðsÞt ;

uðsÞz ¼ ð‘ÞûðsÞz ;

uðsÞz;n ¼ ð‘ÞûðsÞz;n

ð49Þ
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Utilizing the vector representations of the displacement components given by Eq. (12), these prescribed
displacements can be expressed as
cos/‘V
ðsÞT
x qðsÞ þ sin/‘V

ðsÞT
y qðsÞ � ð‘ÞûðsÞn ¼ 0;

� sin/‘V
ðsÞT
x qðsÞ þ cos/‘V

ðsÞT
y qðsÞ � ð‘ÞûðsÞt ¼ 0;

VðsÞT
z qðsÞ � ð‘ÞûðsÞz ¼ 0;

cos/‘V
ðsÞT
z;x q

ðsÞ þ sin/‘V
ðsÞT
z;y q

ðsÞ � ð‘ÞûðsÞz;n ¼ 0:

ð50Þ
These equations are rewritten in compact form as
V
ðsÞT
‘ qðsÞ � ûðsÞn ¼ 0; ð51Þ
where the matrix VðsÞ
‘ and the vector ûðsÞn are defined as
V
ðsÞT
‘ ¼

cos/‘V
ðsÞT
x þ sin/‘V

ðsÞT
y 0

� sin/‘V
ðsÞT
x þ cos/‘V

ðsÞT
y 0

0 VðsÞT
z

0 cos/‘V
ðsÞT
z;x þ sin/‘V

ðsÞT
z;y

2
6666664

3
7777775

ð52Þ
and
û
ðsÞT
‘ ¼ ð‘ÞûðsÞn

ð‘ÞûðsÞt
ð‘ÞûðsÞz

ð‘ÞûðsÞz;n

n o
: ð53Þ
The boundary conditions in Eq. (51) are enforced as constraint conditions by introducing Lagrange mul-
tiplier functions, KðsÞ

a‘ ðtÞ, with a = n, t, z, and K0ðsÞ
z‘ ðtÞ, defined along the ‘th boundary segment. These bound-

ary conditions are written in integral form as
Z
CðsÞ
‘

KðsÞ
‘ ðtÞ V

ðsÞT
‘ qðsÞ � û

ðsÞ
‘

n o
dt ¼ 0; ð54Þ
where the matrix KðsÞ
‘ contains the Lagrange multiplier functions in the form
KðsÞ
‘ ðtÞ ¼

KðsÞ
n‘ ðtÞ

KðsÞ
t‘ ðtÞ

KðsÞ
z‘ ðtÞ

K0ðsÞ
z‘ ðtÞ

2
66664

3
77775: ð55Þ
The Lagrange multiplier functions KðsÞ
a‘ ðtÞ, with a = n, t, z, and K0ðsÞ

z‘ ðtÞ are defined in terms of Legendre poly-
nomials as
KðsÞ
a‘

�
tðnÞ

� �
;K0ðsÞ

z‘ ðtðnÞÞ
�
¼
XJ
j¼0

kðsÞ
jða‘Þ; k

0ðsÞ
jðz‘Þ

� �
PjðnÞ; ð56Þ
where Pj represents the jth-order Legendre polynomial and kj(a‘), with a = n, t, z, and k0
jðz‘Þ are the unknown

Lagrange multipliers associated with each Legendre polynomial, Pj, and boundary segment, CðsÞ
‘ .

Substituting the expressions for the Lagrange multiplier functions from Eq. (56) into Eq. (54) and rear-
ranging the terms, the constraint equations representing the prescribed displacements can be rewritten as
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k
ðsÞT
‘ ðCðsÞ

‘ q
ðsÞ � f

ðsÞ
‘c Þ ¼ 0 with ‘ ¼ 1; . . . ; L; ð57Þ
where
k
ðsÞT
‘ ¼ kðsÞT

1‘ ; kðsÞT
2‘ ; . . . ; kðsÞT

J‘

n o
ð58Þ
with
k
ðsÞT
k‘ ¼ kðsÞ

kðn‘Þ; kðsÞ
kðt‘Þ; kðsÞ

kðz‘Þ; k0ðsÞ
kðz‘Þ

n o
; ð59aÞ

C
ðsÞT
‘ ¼ C

ðsÞT
1‘ C

ðsÞT
2‘ 
 
 
 C

ðsÞT
J‘

h i
; ð59bÞ

C
ðsÞ
j‘ ¼

Z
CðsÞ
‘

P jV
ðsÞT
‘ dC ð60Þ
and
f
ðsÞT
‘c ¼ f

ðsÞT
1ð‘cÞ; f

ðsÞT
2ð‘cÞ; . . . ; f

ðsÞT
Jð‘cÞ

n o
ð61Þ
with
f
ðsÞT
jð‘cÞ ¼

Z
CðsÞ
‘

P jû
ðsÞT
‘ dC: ð62Þ
The constraint equations in Eq. (57) can be assembled to form a single matrix equation combining all of the
constraint equations as
kðsÞT CðsÞqðsÞ � fðsÞc

� �
¼ 0 ð63Þ
where
kðsÞT ¼ kðsÞT
1 ; kðsÞT

2 ; . . . ; kðsÞT
L

n o
; ð64aÞ

CðsÞT ¼ C
ðsÞT
1 C

ðsÞT
2 
 
 
 C

ðsÞT
L

h i
; ð64bÞ

fðsÞ
T

c ¼ f
ðsÞT
1c ; f

ðsÞT
2c ; . . . ; f

ðsÞT
Lc

n o
: ð64cÞ
The system of constraint equations in Eq. (63) is unique, provided the rank of the matrix C(s) is equal to
the total number of constraint equations. Also, Eq. (63) can be treated as the potential energy of the reac-
tion forces producing zero energy since ðCðsÞqðsÞ � fðsÞc Þ ¼ 0, and it can be referred to as the potential energy
of the constraint forces, Vc, in the form
V c ¼ kðsÞT CðsÞqðsÞ � fðsÞc

� �
¼ 0: ð65Þ
3.5. Governing equations

The governing equations are derived based on the principle of virtual work as explained by Washizu
(1982)
dW i ¼ dW e; ð66Þ
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where dWi and dWe represent the virtual work due to internal and external forces, respectively, of the re-
paired skin.

The internal virtual work, dWi, is the sum of the internal virtual work of the skin, patch, and the adhe-
sive, i.e.,
dW i ¼ dW ðsÞ
i þ dW ðpÞ

i þ dW ðaÞ
i ; ð67Þ
where the internal virtual work in the patch, skin, and adhesive is expressed as
dW ðdÞ
i ¼

Z
Ad

deðdÞ
T

sðdÞdA ¼
Z
Ad

deðdÞ
T

EðdÞeðdÞdA with d ¼ p; s ð68Þ
and
dW ðaÞ
i ¼

Z
Aa

deðaÞ
T

sðaÞdA ¼
Z
Aa

deðaÞ
T

EðaÞeðaÞ dA; ð69Þ
where Ad (d = p,s,a) denotes the areas of the skin, patch, and adhesive.
Substituting from Eq. (27) and (34) and with the property of d½LðdÞ

N ðqðdÞÞ�qðdÞ ¼ L
ðdÞ
N ðqðdÞÞdqðdÞ, the total

virtual strain vectors, de(a) and de(d) are obtained as
deðaÞ ¼ dqðpÞ
T

LðpÞ
a � dqðsÞLðsÞT

a ð70Þ

and
deðdÞ ¼ ½LðdÞ
L þ 2LðdÞ

N ðqðdÞÞ�dqðdÞ ¼ 
BðdÞðqðdÞÞdqðdÞ; ð71aÞ

where

BðdÞðqðdÞÞ ¼ L
ðdÞ
L þ 2LðdÞ

N ðqðdÞÞ: ð71bÞ

The external virtual work is expressed as the sum of the virtual work due to externally applied forces,

dW ðsÞ
e , and that arising from the boundary reaction forces, dW ðsÞ

c , i.e.,
dW e ¼ dW ðsÞ
e þ dW ðsÞ

c : ð72Þ

The virtual work due to externally applied forces, dW ðsÞ

e , is obtained from
dW ðsÞ
e ¼

Z
CðsÞ

fduðsÞx tx þ duðsÞy ty þ duðsÞz tz þ duðsÞz;xmx þ duðsÞz;ymygdC; ð73Þ
where the external boundary of the skin is denoted by C(s), the applied tractions by tx, ty, and tz, and the
moments by mx and my; their positive signs are shown in Fig. 1. Substituting for the displacement compo-
nents and their derivatives from Eq. (12) permits this expression in matrix notation as
dW ðsÞ
e ¼ dqðsÞ

T

pðsÞ ð74Þ

in which
pðsÞ
T ¼ pðsÞ

T

e ; pðsÞ
T

j

n o
ð75Þ
with
pðsÞe ¼
Z

CðsÞ
VðsÞ

x tx þ VðsÞ
y ty

n o
dC; ð76aÞ

pðsÞj ¼
Z

CðsÞ
VðsÞ

z tz þ VðsÞ
z;xmx þ VðsÞ

z;ymy

n o
dC: ð76bÞ



E. Oterkus et al. / International Journal of Solids and Structures 42 (2005) 5274–5306 5289
The virtual work due to the boundary reaction forces, dW ðsÞ
c , is identical to the first variation of the poten-

tial energy expression in Eq. (65) as
dW ðsÞ
c ¼ �dV c ¼ �dkðsÞTðCðsÞqðsÞ � fðsÞc Þ � dqðsÞ

T

CðsÞTkðsÞ: ð77Þ
The virtual work due to boundary reactions (constraint conditions) can be interpreted as the virtual work
of the constraint forces, k(s), over the virtual displacements, d(C(s) q(s)), of the skin and the virtual work of
the constrained displacements (boundary conditions), CðsÞqðsÞ � fðsÞc , over the virtual constraint forces, dk(s).
Although the term ðCðsÞqðsÞ � fðsÞc Þ is identical to zero, it is included in the virtual work expression in order to
obtain a complete set of equations that contain both equilibrium equations and constraint conditions.

Substituting from Eqs. (68), (69), (74) and (77), the principle of virtual work from Eq. (66) is rewritten as
Z
As

deðsÞ
T

EðsÞeðsÞdAþ
Z
Ap

deðpÞ
T

EðpÞeðpÞdAþ
Z
Aa

deðaÞ
T

EðaÞeðaÞdA

¼ dqðsÞ
T

pðsÞ � dkðsÞTðCðsÞqðsÞ � fðsÞc Þ � dqðsÞ
T

CðsÞTkðsÞ: ð78Þ
Substituting for the strain vectors, e(d) (d = s, p) and e(a), from Eq. (27) and (34), and their virtual forms,
de(d) (d = s, p) and de(a), from Eq. (70) and (71), and rearranging the terms, the virtual work expression is
recast into a compact form as
dqðsÞ
T

KðsÞðqðsÞÞ þ KðaÞ
ss ðqðpÞ; qðsÞÞ

� �
qðsÞ þ dqðpÞ

T

KðpÞðqðpÞÞ þ KðaÞ
pp ðqðpÞ; qðsÞÞ

� �
qðpÞ

� dqðpÞ
T

KðaÞ
ps ðqðpÞ; qðsÞÞqðsÞ � dqðsÞ

T

KðaÞ
sp ðqðpÞ; qðsÞÞqðpÞ

¼ dqðsÞ
T

pðsÞ � dkðsÞTCðsÞqðsÞ � dqðsÞ
T

CðsÞTkðsÞ þ dkðsÞTfðsÞc ; ð79Þ
where
KðdÞðqðdÞÞ ¼
Z
Ad


BðdÞTðqðdÞÞEðdÞBðdÞðqðdÞÞdA ðd ¼ s; pÞ; ð80aÞ

K
ðaÞ
ab ðqðpÞ; qðsÞÞ ¼

Z
Aa

LðaÞT
a EðaÞðqðpÞ; qðsÞÞLðbÞ

a dA ða; b ¼ s; pÞ: ð80bÞ
The principle of virtual work from Eq. (79) can further be rearranged and put into a more compact form
as
dqðsÞ
T

dqðpÞ
T

dkðsÞT

8><
>:

9>=
>;

KssðqðpÞ; qðsÞÞ KspðqðpÞ; qðsÞÞ CðsÞT

KT
spðqðpÞ; qðsÞÞ KppðqðpÞ; qðsÞÞ 0

CðsÞ 0 0

2
664

3
775

qðsÞ

qðpÞ

kðsÞ

8><
>:

9>=
>;�

dqðsÞ
T

dqðpÞ
T

dkðsÞT

8><
>:

9>=
>;

pðsÞ

0

fc

8><
>:

9>=
>; ¼ 0; ð81Þ
where
KssðqðpÞ; qðsÞÞ ¼ KðsÞðqðsÞÞ þ KðaÞ
ss ðqðpÞ; qðsÞÞ; ð82aÞ

KppðqðpÞ; qðsÞÞ ¼ KðpÞðqðpÞÞ þ KðaÞ
pp ðqðpÞ; qðsÞÞ; ð82bÞ

KspðqðpÞ; qðsÞÞ ¼ �KðaÞ
sp ðqðpÞ; qðsÞÞ; ð82cÞ

KpsðqðpÞ; qðsÞÞ ¼ �KðaÞ
ps ðqðpÞ; qðsÞÞ ¼ KT

spðqðpÞ; qðsÞÞ: ð82dÞ
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For arbitrary variations of the virtual solution vectors dq(s), dq(p), and dk(s), the solution to Eq. (81) is ob-
tained only if
KssðqðpÞ; qðsÞÞ KspðqðpÞ; qðsÞÞ CðsÞT

KT
spðqðpÞ; qðsÞÞ KppðqðpÞ; qðsÞÞ 0

CðsÞ 0 0

2
664

3
775

qðsÞ

qðpÞ

kðsÞ

8><
>:

9>=
>; ¼

pðsÞ

0

fc

8><
>:

9>=
>;: ð83Þ
Note that the resulting governing equations are nonlinear and the matrices Kss(q
(p), q(s)) and Kpp (q

(p), q(s))
are non-symmetric. The solution to this equation requires a nonlinear iterative solution technique that uti-
lizes LU decomposition. Therefore, the Newton–Raphson iteration method, in conjunction with Broyden�s
automatic Jacobian matrix update procedure, is employed.

The nonlinear equilibrium equation, Eq. (83), can be rearranged in the form
wðqÞ ¼ KðqÞq� f ¼ 0; ð84Þ
where the vectors q and f and the matrix K(q) are defined as
qT ¼ qðsÞ
T

; qðpÞ
T

; kðsÞT
n o

; ð85aÞ

fT ¼ pT; 0T; fTc
" #

; ð85bÞ

KðqÞ ¼
KssðqÞ KspðqÞ CðsÞT

KT
spðqÞ KppðqÞ 0

CðsÞ 0 0

2
664

3
775: ð85cÞ
The vector w(q) represents the unbalanced load vector. Under equilibrium conditions, the solution vec-
tor q exactly satisfies Eq. (84) and no unbalanced forces exist. However, it is practically impossible to obtain
a direct solution of the nonlinear equilibrium equations. Instead, the solution is obtained by resorting to an
iterative procedure, such as the Newton–Raphson (N–R) method. In order to proceed with the N–Rmethod,
Eq. (84) is rewritten in iterative form as
wðqkþ1
m Þ ¼ Kðqkþ1

m Þqkþ1
m � fm ¼ 0; ð86Þ
where qkþ1
m denotes the trial solution vector at load step m after k iterations, and it is expressed as a correc-

tion to the trial solution vector, qkm, at the kth iteration at load step m, i.e.,
qkþ1
m ¼ qkm þ Dq ð87Þ
in which Dq represents the correction term (incremental solution vector). The solution vector qkm is known
from the kth iteration at load step mand the correction term, Dq, is to be determined.

The Taylor series expansion of wðqkþ1
m Þ about the known trial solution qkm is
wðqkþ1
m Þ ¼ wðqkmÞ þ

ow
oq

ðqkmÞDqþHOT ¼ 0 ð88Þ
in which the unbalanced load vector wðqkmÞ is non-zero from the kth trial solution vector, qkm. Retaining the
linear terms in the expansion while disregarding the higher-order terms (HOT), the Newton–Raphson (N–
R) method yields
JðqkmÞDq ¼ �wðqkmÞ; ð89Þ
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where the Jacobian matrix, JðqkmÞ, is defined as
JðqkmÞ ¼
ow
oq

ðqkmÞ ¼
oK

oq
ðqkmÞqkm þ KðqkmÞ ð90Þ
and
Dq ¼ qkþ1
m � qkm: ð91Þ
Because of the linearization of Eq. (88), the incremental solution vector (the correction term), Dq, ob-
tained from Eq. (89) is not expected to yield the actual solution. However, it provides a good estimate
of qkþ1

m in the form
qkþ1
m ¼ qkm � J�1ðqkmÞwðqkmÞ: ð92Þ
As part of the iterative solution procedure, this recursive relationship requires the updated Jacobian matrix,
i.e., Jðqkþ1

m Þ, which is obtained based on Broyden�s algorithm (Geradin et al., 1981)
Jðqkþ1
m Þ ¼ JðqkmÞ þ

½Dw � JðqkmÞDq�DqT
DqTDq

; ð93Þ
where
Dw ¼ wðqkþ1
m Þ � wðqkmÞ: ð94Þ
At the beginning of the current (mth) load step, the converged solution vector, qkm�1, and the Jacobian ma-
trix, Jðqkm�1Þ, computed from the previous load step are employed as the initial estimates for the solution
vector and the Jacobian matrix in the current load step, i.e.,
q0m ¼ qkm�1 ¼ qm�1 and Jðq0mÞ ¼ Jðqkm�1Þ ¼ Jðqm�1Þ; ð95a; bÞ

where the superscripts on the right-hand sides of Eq. (95a, b) are removed to represent the converged solu-
tions from the preceding load step.

Note that for the case of k = m = 0 (i.e., q00 ¼ 0), the Jacobian matrix Jðq00 ¼ 0Þ represents the linear stiff-
ness matrix at the unloaded state of the patch-repaired skin, i.e.,
Jðq00 ¼ 0Þ ¼ KðqðpÞ ¼ 0; qðsÞ ¼ 0Þ ¼ KL: ð96Þ

Therefore, the initial solution vector and the Jacobian matrix in the first load step are estimated by
q01 ¼ 0 and Jðq01Þ ¼ KL: ð97Þ
4. Numerical results

Before demonstrating the applicability of the present approach, its validity is established first by com-
parison against the experimental measurements for an untapered patch d = 0 presented by Barut et al.
(2002). Then, its applicability is demonstrated by considering two patch–repair configurations. The first
configuration is a tapered aluminum patch bonded over a circular cutout in an aluminum skin with a linear
elastic adhesive material. The second configuration is an untapered composite patch bonded over a circular
cutout in a composite skin with a bi-linear elastic adhesive material.

Arising from the presence of symmetry in geometry and loading for both the validation and demonstra-
tion cases, the displacement component, ��uðqÞx , is symmetric in the x-direction while asymmetric in the
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y-direction and bar�uðqÞy is asymmetric in the x-direction while symmetric in the y-direction. Also, ��uðqÞz is sym-
metric in both directions. In order to take advantage of these symmetry conditions along the centerlines, the
global functions in Eq. (10), ��uðqÞi , with i = x, y, z, are chosen as either odd or even terms of the Chebyshev
polynomials in the form
��uðqÞx ¼
XMqþ1

m¼1;3;5;7...

Xm�1

n¼0;2;4;6::

cðqÞxmnT mðxÞT nðyÞ;

��uðqÞy ¼
XMq

m¼0;2;4;6...

Xmþ1

n¼1;3;5;7::

cðqÞymnT mðxÞT nðyÞ; ðq ¼ s; pÞ

��uðqÞz ¼
XMq

m¼0;2;4;6...

Xm
n¼0;2;4;6...

cðqÞzmnT mðxÞT nðyÞ:

ð98Þ
In the skin, both in-plane and transverse displacement fields are approximated by complex potential
functions of order 5 (i.e., Ns2 = Ns1 = 5) and Chebyshev polynomials of order Ms = 24, thus leading
to a total of 321 generalized coordinates (unknowns). Due to the absence of a cutout in the patch, the
Fig. 4. Geometric parameters and loading of the skin with a circular cutout repaired by bonding a square patch.
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displacement components are represented by only Chebyshev polynomials of order Mp = 24, (i.e.,
Np2 = Np1 = 0), thus introducing an additional 273 generalized coordinates and increasing the total number
of unknowns to 638. In order to apply the clamped bending boundary conditions along the loaded edges,
the reaction forces associated with the transverse deflection and the slope normal to each boundary segment
are represented by 10-term Legendre polynomials, thus resulting in a total of 40 constraint equations. Addi-
tional constraint equations are also used to suppress the rigid-body motion of the skin and to ensure single-
valuedness of the transverse deflection associated with the complex functions, (Madenci et al., 2001).

In both validation and demonstration cases, the skin is subjected to a uniform tension of N0 = 0 to
Nmax

0 ¼ 200 lb/in. in 10 equal load increments along the horizontal edges, as illustrated in Fig. 4. Also, these
edges are clamped in order to suppress the bending deformations. The vertical edges are free of any traction
or kinematic boundary conditions. For each load step, the solution is obtained through a Newton-Raphson
iteration procedure with Broyden�s automatic stiffness (Jacobian) matrix update.

As shown in Fig. 4, the skin has a rectangular geometry, with its length and width specified by Ls = 10 in.
andWs = 4 in., respectively. The circular cutout at the center of the skin has a diameter of d = 0.75 in. The
patch is square, with a length of Wp = 1.125 in. The thickness of the adhesive bond is specified as
2ha = 0.0025 in.

The Young�s modulus and Poisson�s ratio for aluminum are E = 10.2 · 103 psi and m = 0.33, respec-
tively. As shown in Fig. 2, the parameters describing the bi-linear adhesive material behavior are specified
as GðaÞ

1 ¼ 60� 103 psi, GðaÞ
2 ¼ 0:5GðaÞ

1 , and cðaÞc ¼ 0:005 in./in., and it has a Poisson�s ratio of m(a) = 0.34.

4.1. Validation

The validation is achieved for two different skin-to-patch thickness ratios. Both the skin and patch are
made of aluminum. For the first case, the skin and patch have uniform thicknesses of hs = 0.088 in. and
hp = 0.024 in., respectively, and the second case has hs = 0.0635 in. and hp = 0.049 in. The patch is unta-
pered with d = 0. The comparison of the predictions against the experimental measurements presented
Fig. 5. A typical deformed configuration of the aluminum skin repaired by bonding an aluminum patch at a load level of
N 0=Nmax

0 ¼ 0:5.



Fig. 6. Comparison of present analysis predictions against strains measured on the patch, near and away from the cutout for skin-to-
patch thickness ratio: (a) 3.67 (b) 1.3.
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by Barut et al. (2002) establishes the validity of the present approach. A typical deformed configuration
corresponding to a load step of N 0=Nmax

0 ¼ 0:5 is shown in Fig. 5 for the aluminum skin repaired by bond-
ing an aluminum patch. The comparison of the predicted and measured strains on the patch, near the cut-
out and away from the cutout on the skin shows remarkable agreement as shown in Fig. 6.
Fig. 7. The aluminum skin repaired by bonding an untapered aluminum patch at varying load levels of N 0=Nmax
0 : (a) transverse

displacements, �uðsÞz =hs and �uðpÞz =hs and (b) in-plane stress resultants, N ðsÞ
xx =N

max
0 and N ðpÞ

xx =N
max
0 , at point (x = 0,y = 0.35).



5296 E. Oterkus et al. / International Journal of Solids and Structures 42 (2005) 5274–5306
4.2. Demonstration

For the two demonstration configurations, the aluminum skin has a uniform thickness of hs = 0.04 in.
As shown in Fig. 4, the tapered length of the patch, denoted by d, is varied from 0 to 0.35 in. in equal incre-
ments of 0.05 in. The thickness of the tapered patch, hp (x,y), is defined by
Fig. 8.
In-pla
and (d
hpðx; yÞ ¼

hsð�W p=2þ d 6 x 6 W p=2� dÞ

hs � hs
d ðx� W p=2þ dÞðx P W p=2� dÞ

hs þ hs
d ðxþ W p=2� dÞðx 6 �W p=2þ dÞ

8>>>><
>>>>:

: ð99Þ
The quasi-isotropic composite skin has a stacking sequence of [45/�45/0/90/90/0/�45/45]s. The patch is
an angle-ply laminate with a stacking sequence of [h/�h]2s, where h varies between 0� and 90� in incre-
ments of 5�. The patch has 8 plies and its thickness is half that of the skin. The ply thickness is specified
Contour stresses in the aluminum skin repaired by bonding an untapered aluminum patch at a load level of N 0=Nmax
0 ¼ 1: (a)

ne stress resultant, N ðsÞ
xx , in the skin; (b) in-plane stress resultant, N ðpÞ

xx , in the patch; (c) transverse shear stress, rðaÞ
xz , in the adhesive

) transverse normal stress, rðaÞ
zz , in the adhesive.
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as 0.0025 in., and its material properties are specified as EL = 18.5 · 106 psi, ET = 1.64 · 106 psi,
GLT = 0.87 · 106 psi, and mLT = 0.3. The subscripts �L� and �T� denote the fiber and transverse directions,
respectively.

4.2.1. Configuration I
The first configuration is a tapered aluminum patch bonded over a circular cutout in an aluminum skin

with a linear elastic adhesive material. Corresponding to each load increment, the variation of normalized
Fig. 9. The aluminum skin repaired by bonding a tapered aluminum patch at a load level of N 0=Nmax
0 ¼ 1 for varying taper lengths of

d/hp: (a) transverse displacements, �uðsÞz =hs and (b) in-plane stress resultants, N ðsÞ
xx =N

max
0 , at point (x = 0,y = 0.35).
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transverse displacement components in the skin and patch, �uðsÞz =hs and �uðpÞz =hs, at the point of peak val-
ues (x = 0, y = 0.375 in.), is shown in Fig. 7a. As observed in this figure, the transverse displacements of the
patch and skin are on top of each other because the peeling strains, which cause the only difference, are
rather small.

As shown in Fig. 7a, the difference in transverse displacements between the linear and nonlinear analyses
is significant. The magnitude of the transverse displacement obtained from the nonlinear analysis (12.5% of
the skin thickness) is primarily due to the excessive stiffening of the patch and the skin arising from the ap-
plied in-plane tension. As a result, the stress stiffening of both the skin and patch tends to prevent the bend-
ing deformations arising from the eccentric in-plane loading.

For each load increment, the variations of the normalized in-plane stress resultants, N ðsÞ
xx =N

max
0 and

N ðpÞ
xx =N

max
0 , at the point (x = 0, y = 0.375 in.) are shown in Fig. 7b. In order to elucidate the effect of the

nonlinear analysis, this figure includes the results of both the linear and nonlinear analyses. The deviation
of in-plane stress resultants between the nonlinear and linear analyses is not as significant as the deviation
between the nonlinear and linear transverse displacements shown in Fig. 7a. This is expected because the
applied tension must be balanced by in-plane stresses in the skin and patch in order to satisfy the equilib-
rium of the patch-repaired skin. As shown in Fig. 7b, the nonlinear in-plane stress resultant, N ðsÞ

xx , in the skin
is lower than that of the linear analysis while the nonlinear stress resultant, N ðpÞ

xx , in the patch is higher than
its linear counterpart, indicating that the patch tends to compensate for any drop in the in-plane stress
resultant in the skin in order to maintain equilibrium.

The three-dimensional contour plots of the in-plane stress resultant, Nxx, in the skin and patch at load
step N 0=Nmax

0 ¼ 0:5 are shown in Fig. 8a and b. As shown in these figures, the present analysis captures the
stress concentrations near the circular cutout under the patch. As shown in Fig. 8a, the patch reduces the
stress intensification by about 30% from the well-known stress concentration of 3N0. Also, the transverse
shear and peeling stress distributions in the adhesive at the fifth load increment (i.e., N 0=Nmax

0 ¼ 0:5) are
shown in Fig. 8c and d. As shown in these figures, the present analysis captures the shearing and peeling
Fig. 10. The aluminum skin repaired by bonding an tapered aluminum patch at a load level of N 0=Nmax
0 ¼ 1 for varying taper lengths

of d/hp: (a) transverse shear stress, rðaÞ
xz , in the adhesive and (b) transverse normal stress, rðaÞ

zz , in the adhesive at the mid-point of the
adhesive edge.
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stress concentrations near the edges and the cutout, and the transverse shear stress component, rðaÞ
xz , has an

asymmetric and the peeling stress, rðaÞ
zz , has a symmetric distribution. Around the hole boundary, the shear

stress, rðaÞ
xz , reaches the peak values around ±45� and ±135�. The peeling stress, rðaÞ

zz , reaches the local peak
value at 90� and 270� around the hole boundary.

The effect of taper length, d, on the out-of-plane displacement and in-plane stress components of the skin
at the point (x = 0, y = 0.375) is shown in Fig. 9. The out-of-plane displacement slightly decreases with
Fig. 11. The composite skin repaired by bonding an untapered composite patch at varying load levels of N 0=Nmax
0 : (a) transverse

displacements, �uðsÞz =hs and �uðpÞz =hs and (b) in-plane stress resultants, N ðsÞ
xx =N

max
0 and N ðpÞ

xx =N
max
0 , at point (x = 0,y = 0.35).
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increasing taper length while the normal stress component, N ðsÞ
xx , slightly increases. This behavior is expected

because the increase in taper length reduces its in-plane and bending stiffnesses. This stiffness loss in the
tapered patch, therefore, causes coupling between the skin and patch that is weaker than that of a skin with
an untapered patch. Furthermore, the skin has to carry more load in the overlapped region in order to pre-
serve equilibrium.

As shown in Fig. 10, the major benefit of an increasing taper length is for the reduction of the stress
concentrations near the edges in the adhesive. Both the peeling and shearing stresses, evaluated at the
Fig. 12. The composite skin repaired by bonding an untapered composite patch at a load level of N 0=Nmax
0 ¼ 1 for a varying angle-ply

layup parameter, h: (a) transverse displacements, �uðsÞz =hs and �uðpÞz =hs and (b) in-plane stress resultants, N ðsÞ
xx =N

max
0 and N ðpÞ

xx =N
max
0 , at

point (x = 0, y = 0.35).
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mid-point of the edges perpendicular to the loading direction, reduce considerably with increasing taper
length. The reduction in shearing stress is more significant than that of the peeling stress in comparison
to that of the untapered patch.

4.2.2. Configuration II
The second configuration is an untapered composite patch bonded over a circular cutout in a composite

skin with a bi-linear elastic adhesive material. For a 30� angle-ply patch layup and a quasi-isotropic skin,
the variation of the normalized out-of-plane displacement, uz, and the normalized in-plane stress, Nxx=Nmax

0 ,
evaluated at point (x = 0, y = 0.375) under increasing uniform tension is shown in Figs. 11a,b. In these fig-
ures, the dashed and solid lines denote the geometrically nonlinear analyses with bi-linear (GN and BL) and
linear (GN and LE) adhesive material behavior. The solid line with hollow circles denote the geometrically
linear analysis results with linearly elastic adhesive material properties.

As observed in Fig. 11a, the stiffening effect due to in-plane loading has a significant effect on reducing
the out-of-plane displacement of both the patch and the skin. The stiffening effect arising from the non-
linear strain measure reduces the deflections by almost two-thirds that of the linear analysis. Further-
more, there is a considerable difference in the in-plane stress resultants, Nxx=Nmax

0 , between the linear
and geometrically nonlinear analyses, as observed in Fig. 11b. However, the decrease in the in-plane
stress resultant in the skin due to geometrically nonlinear effects is compensated for by an increase in
the patch.

The effect of angle-ply patch layup on the out-of-plane displacement and in-plane stress components is
captured in Figs. 12a,b. Both the in-plane displacement and in-plane stress resultant components are eval-
uated at point (x = 0, y = 0.375). As shown in Fig. 12a, the out-of-plane displacements of both the skin
and patch reduce as the patch layup parameter, h, changes from 0� to 90�. It reaches the maximum at the
0� angle-ply layup and becomes minimum at the 90 angle-ply layup. This figure also indicates that the
coupling between the skin and patch decreases as the in-plane and bending stiffnesses of the patch
Fig. 13. The composite skin repaired by bonding an untapered composite patch at a load level of N 0=Nmax
0 ¼ 1 for a varying angle-ply

layup parameter, h: (a) transverse shear stress, rðaÞ
xz , in the adhesive and (b) transverse normal stress, rðaÞ

zz , in the adhesive at the mid-
point (x = 0, y = 0.35) of the adhesive edge.
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decreases in the loading direction. Shown in Fig. 12b, this effect is also apparent by the behavior of the
skin. It tends to carry more in-plane load as the in-plane stiffness of the patch becomes weaker in the
loading direction.

Although the bi-linear material behavior of the adhesive has an insignificant effect on the overall re-
sponse of the patch and skin, its effect on the response of adhesive stresses along the edges of the adhesive
is considerable, as shown in Fig. 13. Also, the change in the angle-ply patch layup parameter, h, reduces the
shearing stresses considerably while influencing the peeling stress slightly.

As shown in Fig. 14, the influence of the bi-linear material response on the effective shearing strain in the
adhesive is illustrated through four load steps of N 0=Nmax

0 ¼ 0:3; 0:5; 0:8; 1:0. In this figure, the light and
dark areas represent the regions where the effective shearing strains are, respectively, below and above
the characteristic value of cðaÞc . As expected, the shearing strains start to exceed the critical value at the cor-
ners and near the cutout in the adhesive first and then grow towards the interior of the adhesive domain as
the applied load increases.
Fig. 14. Distribution of effective shear strain in the adhesive at load steps of N 0=Nmax
0 ¼ 0:3; 0:5; 0:8; 1:0.
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5. Conclusions

A geometrically nonlinear analytical approach for determining the stress and displacement fields in a
bonded patch-repaired skin with a circular cutout is presented. This approach accounts for the presence
of tapered patch geometry and stacking sequence, as well as the linear and bi-linear elastic material behav-
iors. It captures the in-plane stress concentrations near the cutout and the stress concentrations in both
transverse shear and peeling stresses near the corners while including the stiffening effects in both the skin
and patch arising from in-plane tensile loading.

The stiffening of both the skin and patch significantly reduces the out-of-plane displacement. Although
noticeable, the effect of geometric nonlinearity on the in-plane stress response of both the patch and skin is
not considerably large. Any decrease in the in-plane stress distribution in the skin causes an increase in the
in-plane stress distribution in the patch.

The tapered patch geometry slightly changes the response of the patch and the skin but considerably
reduces the peeling and shearing stress concentrations near the edges of the adhesive. As the angle-ply
parameter, h, of the patch layup increases, the in-plane and the bending stiffnesses of the patch decrease
in the loading direction. Therefore, the skin carries more load, thus experiences higher in-plane stresses.
Therefore, as the angle-ply parameter, h, of the patch layup increases, the skin carries more load and expe-
riences higher in-plane stresses because of the reduction of the in-plane and bending patch stiffnesses in the
loading direction.

Also, the coupling between the skin and patch is reduced due to the stiffness loss of the patch in the load-
ing direction. As a result, the out-of-plane displacements of both the skin and patch decrease as the angle-
ply layup parameter increases. In the adhesive, the increase in this parameter mainly reduces the shearing
stresses and slightly changes the peeling stresses.

The bi-linear adhesive material behavior has almost no effect on the overall behavior of the patch and
skin. In the adhesive, however, both shearing and peeling stresses reduce considerably in the areas where
the shearing strains go beyond the characteristic value of the bi-linear behavior.
Appendix A

The complex potential functions, UðqÞ
nk ðz

ðqÞ
ek Þ with q = s,p, appearing in Eq. (8) are defined as
UðsÞ
nk ðz

ðsÞ
ek Þ ¼ ðnðsÞ

ek Þ
n
; ðA:1aÞ

UðpÞ
nk ðz

ðpÞ
ek Þ ¼ ðzðpÞek Þ

n
: ðA:1bÞ
The mapping functions nðsÞ
ek , first introduced by Bowie (1956), map a cutout onto a unit circle. In this analysis,

the mapping functions for an elliptical cutout, introduced by Lekhnitskii (1968), are employed in the form
nðsÞ
ek ¼

zðsÞek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðsÞek

� �2
� a2 � lðsÞ

ek

� �2
b2

r

a� I lðsÞ
ek

� �2
b

ðk ¼ 1; 2Þ ðA:2Þ
in which zðqÞek ¼ xq þ lðqÞ
ek yqðq ¼ s; pÞ and a and b are the major and minor axes of the elliptical cutout, with

I ¼
ffiffiffiffiffiffiffi
�1

p
. The sign of the square root term is chosen so that j nðsÞ

ek j 1.
Inverting the mapping function provides xðsÞ

ek ðn
ðsÞ
ek Þ as
zðsÞek ¼ xðsÞ
ek nðsÞ

ek

� �
¼ rekn

ðsÞ
ek � sek

nðsÞ
ek

ðA:3Þ
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in which
rek ¼
1

2
ða� IlðsÞ

ek bÞ; sek ¼
1

2
ðaþ IlðsÞ

ek bÞ: ðA:4Þ
The unknown complex constants, lðqÞ
e1 and lðqÞ

e2 ðq ¼ s; pÞ, and their complex conjugates, i.e., lðqÞ
e3 ¼ �lðqÞ

e3

and lðqÞ
e4 ¼ �lðqÞ

e2 , are the roots of the characteristic equation obtained from the in-plane compatibility
condition
a0ðqÞ11 lðqÞ
ek

� �4
� 2a0ðqÞ16 lðqÞ

ek

� �3
þ 2a0ðqÞ26 þ a0ðqÞ66

� �
lðqÞ

ek

� �2
� 2a0ðqÞ26 lðqÞ

ek þ a0ðqÞ22 ¼ 0 ðA:5Þ
in which the coefficients a0ðqÞij are components of the flexibility matrix a 0(q), which is the inverse of the in-
plane stiffness matrix, A 0(q). Both the flexibility and the stiffness matrices, a 0(q) and A 0(q), are measured with
respect to the local coordinate system (xq,yq). The angle w(q) represents the orientation of the local coordi-
nate system with respect to the global coordinate system. Thus, the components of A 0(q) can be directly ob-
tained by transforming the components of the in-plane stiffness matrix, A(q), defined in the global system
through the orientation angle. This transformation relation is available in any textbook on composite mate-
rials. Also, the complex constants, pðqÞk and qðqÞk , in Eq. (9) are defined as
pðqÞk ¼ a0ðqÞ11 ðlðqÞ
ek Þ

2 þ a0ðqÞ12 � a0ðqÞ16 lðqÞ
ek ; ðA:6aÞ

qðqÞk ¼ a0ðqÞ12 lðqÞ
ek þ a0ðqÞ22 =lðqÞ

ek � a0ðqÞ26 : ðA:6bÞ
The complex functions, FðsÞ
nk ðz

ðsÞ
jk Þ, appearing in the expression for the local functions, �uðqÞz , with q = s,p, in

(8c) are defined as
F
ðsÞ
nk ðz

ðsÞ
jk Þ ¼

rjk

n
ðnðsÞ

jk Þ
n � sjk

n� 2
ðnðsÞ

jk Þ
n�2

; n P 3

rjkðnðsÞ
jk Þ

2

2 � sjk ln nðsÞ
jk ; n ¼ 2

ðzðsÞjk Þ
n
; n ¼ 0; 1

rjk ln nðsÞ
jk þ

sjkðnðsÞ
jk Þ

�2

2 ; n ¼ �1

rjk
nþ 1

ðnðsÞ
jk Þ

nþ1 � sjk
n� 1

ðnðsÞ
jk Þ

n�1
; n 6 �2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

; ðA:7aÞ

F
ðpÞ
nk ðz

ðpÞ
jk Þ ¼ ðzðpÞjk Þ

n with n P 0 ðA:7bÞ

in which the expressions for the mapping function, nðpÞ

jk , and the constants, rjk and sjk, are respectively, in
the same form as the expressions for nðsÞ

ek , rek, and sek, except that the subscript e is replaced by j.
In Eq. (A.7a,b), the complex variables zðqÞjk , with q = s,p, are defined in the form
zðqÞjk ¼ xq þ lðqÞ
jk yq ðA:8Þ
in which the unknown complex constants, lðqÞ
j1 and lðqÞ

j2 , and their conjugates are obtained from the bending
equilibrium equations for an unpatched plate
D0ðqÞ
22 ðlðqÞ

jk Þ
4 þ 4D0ðqÞ

26 ðlðqÞ
jk Þ

3 þ ð2D0ðqÞ
12 þ 4D0ðqÞ

66 ÞðlðqÞ
jk Þ

2 þ 4D0ðqÞ
16 lðqÞ

jk þ D0ðqÞ
11 ¼ 0; ðA:9Þ
where D0ðqÞ
ij are the components of the bending stiffness matrix D 0(q), which is defined with respect to the

local coordinate system (xq, yq). The bending stiffness matrix, D 0(q), can be directly obtained from the trans-
formation of matrix D(q) defined in the global coordinates. This transformation relation is available in any
textbook on composite materials.
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The local vector of complex interpolation functions, V
ðqÞ
a (a = x, y, z), appearing in Eq. (11) are defined

as
V
ðqÞT

a ¼ V
ðqÞT

aðNq1Þ; V
ðqÞT

aðNq1�1Þ; . . . ; V
ðqÞT

an ; . . . ; V
ðqÞT

aðNq2Þ

n o
ðA:10Þ
with
V
ðqÞT

aðnÞ ¼ V
ðqÞT

aðn1Þ;V
ðqÞT

aðn2Þ


 �
ðq ¼ s; p; a ¼ x; yÞ ðA:11Þ
in which
V
ðqÞT

aðnkÞ ¼ 2Re dðqÞ
ak UðqÞ

nk

h i
;�2Im dðqÞ

ak UðqÞ
nk

h in o
ðq ¼ s; p; a ¼ x; y; k ¼ 1; 2Þ ðA:12Þ
and
V
ðqÞT

z ¼ V
ðqÞT

zðNq1Þ; V
ðqÞT

zðNq1�1Þ; . . . ; V
ðqÞT

zðnÞ ; . . . ; V
ðqÞT

zðNq2Þ

n o
ðA:13Þ
with
V
ðqÞT

zðnÞ ¼ V
ðqÞT

zðn1Þ; V
ðqÞT

zðn2Þ

n o
ðq ¼ s; pÞ ðA:14Þ
in which
V
ðqÞT

zðnkÞ ¼ 2Re F ðqÞ
nk

h i
;�2Im F ðqÞ

nk

h in o
ðq ¼ s;p; k ¼ 1; 2Þ: ðA:15Þ
The corresponding vectors of unknown coefficients, a(q) and b(q), are defined in the form
aðqÞT ¼ aðqÞT
Nq1

; a
ðqÞT
Nq1þ1; . . . ; aðqÞT

n ; . . . ; aðqÞT
Nq2

n o
ðA:16Þ
in which
aðqÞT
n ¼ aðqÞT

n1 ; aðqÞT
n2

n o
ðA:17Þ
with
aðqÞT
nk ¼ Re aðqÞ

nk

h i
; Im aðqÞ

nk

h in o
ðA:18Þ
and
bðqÞT ¼ bðqÞT
Nq1

; bðqÞT
Nq1þ1; . . . ; bðqÞT

n ; . . . ; bðqÞT
Nq2

n o
ðA:19Þ
in which
bðqÞT
n ¼ bðqÞT

n1 ; b
ðqÞT
n2

n o
ðA:20Þ
with
b
ðqÞT
nk ¼ Re b

ðqÞ
nk

h i
; Im b

ðqÞ
nk

h in o
: ðA:21Þ
Also, the vector of global interpolation functions, V
ðqÞ
a ða ¼ x; y; zÞ, and their associated unknown vectors,

cðqÞa , in Eq. (11a,b) are defined as



5306 E. Oterkus et al. / International Journal of Solids and Structures 42 (2005) 5274–5306
V
ðqÞT

a ¼ fT 00ðx; yÞ; T 10ðx; yÞ; T 01ðx; yÞ; T 20ðx; yÞ; T 11ðx; yÞ; T 02ðx; yÞ; . . . ; T 0Mqðx; yÞg
ðA:22Þ
in which Tij(x,y) = Ti(x)Tj(y) and
cTa ¼ f ca00; ca10; ca01; ca20; ca11; ca02; . . . ; ca0Mq g: ðA:23Þ
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