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Abstract

This study presents a solution method to analyze the geometrically nonlinear response of a patch-repaired flat panel
(skin) with a cutout under general loading conditions. The effect of induced stiffening due to tensile loading on the in-
plane and, particularly, the out-of-plane behaviors of the patch-repaired skin are investigated. The damage to the skin is
represented in the form of a cutout under the patch. The patch with tapered edges is free of external tractions. The skin
is subjected to general boundary and loading conditions along its external edge. The solution method provides the
transverse shear and normal stresses in the adhesive between the skin and the patch, and in-plane and bending stresses
in the patch and skin. Both the patch and skin are made of linearly elastic composite laminates, and the adhesive
between them is homogeneous and isotropic, exhibiting a bi-linear elastic behavior. Modified Green’s strain—displace-
ment relations in conjunction with von Karman assumptions are employed in determining the in-plane strains in the
skin and patch; however, the transverse shear strains in the adhesive are determined based on the shear-lag theory.
The present solution method utilizes the principle of virtual work in conjunction with complex potential functions.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The objectives of a patch repair are to restore the static strength and durability of a structure and to
decrease stress concentrations caused by damage in the form of a circular or an elliptical cutout. An essen-
tial part of the repair design is the prediction of the strength of the patch-repair and its effectiveness in
reducing the stress concentrations around the cutout. The strength of a bonded patch repair depends on
the surface preparation, geometries of the patch and damage area, material properties, and the adhesive
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thickness and its possible variation and exposure to adverse environments. Furthermore, reduction of the
transverse and peel stress concentrations along the edges of the adhesive is important in order to prevent
premature failure of the bonded repair. Peak transverse shear stresses in the adhesive can be reduced by
tapering the patch thickness near its edges.

A majority of the previous analytical investigations on the analysis of bonded patch repair of composite
skin are based on the small deflection theory, in which the strain measure does not include the higher-order
displacement terms. However, under uniaxial loading, the bending stiffness of both the patch and skin in-
creases due to the induced stiffness arising from tensile loading, thus affecting the bending deformation sig-
nificantly. This stiffening effect can only be included by considering the nonlinear (higher-order)
displacement terms in the strain measure. Although there are only a few, recent investigations on bonded
patch repair analysis include the effect of geometric nonlinearity (Klug and Sun, 1998; Naboulsi and Mall,
1998; Andruet et al., 2001; Tong and Xiannian, 2003; Duong and Yu, 2003). In most of these studies, either
a commercially available finite element program is utilized (Klug and Sun, 1998), or special finite element
models are developed based on two-dimensional elements (Naboulsi and Mall, 1998), or combined two-
and three-dimensional elements with appropriate constraint conditions between the adhesive and adherents
are used (Andruet et al., 2001; Tong and Xiannian, 2003).

In finite element analysis, the adhesive requires a highly refined three-dimensional mesh in order to keep
the proper aspect ratio between the elements in adherends and adhesives. In the case of geometric and mate-
rial nonlinearities, the iterative solution of the governing equations in which the global stiffness matrix is
repeatedly calculated, the three-dimensional finite element analysis of the entire domain becomes compu-
tationally demanding. Therefore, both global and local models become necessary as performed by Barut
et al. (2002) to capture acceptable accuracy. Thus, it is beneficial to have an efficient special-purpose anal-
ysis method that can be used to conduct extensive parametric studies in a timely manner and at relatively
low computational costs. An analytic study was also performed for the geometrically nonlinear analysis of
bonded patch repairs of infinitely long skin with a crack (Duong and Yu, 2003) for which the adhesive is
assumed to be rigid, thus excluding the deformation in the adhesive. In all of these patch-repair studies, an
untapered patch is bonded over a crack that represents the damage rather than a cutout.

This study extends the approach by Barut et al. (2002) to address the geometrically nonlinear behavior of
a composite skin with a cutout repaired by bonding a tapered composite patch. In particular, it investigates
the effects of stress stiffening, thickness of the tapered patch, and the patch lamination, as well as the bi-
linear elastic behavior of the adhesive on the in-plane stresses in the skin and patch and the transverse nor-
mal and transverse shear stresses in the adhesive. The tapered patch thickness becomes especially important
in reducing the stress concentrations near the adhesive edges. The isotropic adhesive exhibits either a linear
elastic or a bi-linear elastic behavior. The damage to the skin is represented in the form of a circular cutout.

The nonlinear governing equations are derived based on the principal of virtual work in conjunction
with a Rayleigh—Ritz semi-analytical solution method. In order to demonstrate the capabilities of the pres-
ent analysis method, two patch-repair configurations are considered for the numerical results. The first
problem investigates the effect of a tapered aluminum patch bonded over a circular cutout in an aluminum
skin having a linear elastic adhesive material behavior. The second problem investigates the effect of a bi-
linear elastic adhesive behavior on the repair of a composite skin having a circular cutout with an untapered
composite patch.

2. Problem statement
The patch-repair configuration shown in Fig. 1 consists of a composite patch bonded to the skin with a

circular or an elliptical hole representing the damage. The adhesive thickness is uniform. The elliptical cut-
out, which can be located arbitrarily in the skin under the patch, has a semi-major axis and a semi-minor
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Fig. 1. Geometry and loading of a bonded patch-repaired skin with an elliptical cutout.

axis of length a and b, respectively. Two coordinate systems whose origins coincide with the center of the
cutout are shown in Fig. 1. The global structural coordinates are given by (x, y,z), and the principal coor-
dinates of the elliptical cutout are given by (x,, y,, z;). The orientation of the cutout with respect to the glo-
bal structural coordinates is defined by the angle . Although not required, a local coordinate system,
(Xp, Yp» Zp), with orlentatlon angle v, is also attached to the patch for consistency in the formulation.

As shown in Fig. 1, F represents the /th boundary segment of the entire boundary. The unit normal to
the /th boundary segment is represented by n, >, with components n(é) and ”<z in the x-and y-directions,
respectively. The unit normal, n, ), makes an angle, (;’);, Wlth res%)ect to the positive x-axis, as shown in
Fig. 1 Srmllarly, the unit normals to the kth boundary, I of the patch and adhesive are denoted
by nk Jand n, @ respectively.

The patch is attached to the skin by the adhesive and, therefore, its external boundaries are traction-free.
The exterior edges of the skin are subjected to both in-plane tractions and bending moments. The in-plane
external tractions include components ¢,, #,, and 7., and the external bending tractions include components
m, and m,. The traction components are defined with respect to the (x, y, z) structural coordinates, and
their positive-valued directions are shown in Fig. 1. The global displacement components in the x-, y-,
and z- drrectlons are denoted by U U y" ,and U ‘”, with d =s, p, a, respectively. The superscripts ‘p’,
‘s’, and ‘a’ denote the patch, skin, and adhesive, respectively. Symmetrically lamlnated patch and skin
are made of specially orthotropic layers, and each layer has an orientation angle Hk ; defined with respect
to the positive x-axis (Fig. 1). Each layer has thickness tk , elastic moduli E<L and ET , shear modulus GLT,
and Poisson’s ratio v(LT), where L and T are the longitudinal (fiber) and transverse principal material direc-
tions, respectively.
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The adhesive material is isotropic, homogeneous, and elastic, with a bi-linear relation between the effec-
tive transverse shear stress, rff‘g, and effective transverse shear strain, yé"}f), as shown in Fig. 2. The effective
transverse shear stress and strain are defined by

2 2
= +al (1a)
and
. 2)2 )2
78 =2 4y (1b)

in which ¢, ¢ and y{%),7® represent the components of the transverse shear stress and strain, respec-
tively, in the adhesive. As shown in Fig. 2, the initial shear modulus of the bi-linear adhesive behavior is
denoted by Gia) (it reduces to G;a) after the characteristic transverse shear strain, 7{*)) and has a Poisson’s
ratio of v'¥. With these parameters, the bi-linear relationship between the effective transverse shear stress,
ri?f), and effective transverse shear strain, yé}?, can be expressed as

i) = G 1= H (5 =) | + [ + 6 (5 =) |1 (0 =), )

where H(y%%) —7®) is the Heaviside step function.
In accordance with this relationship, the transverse shear stresses, agfz‘), and strains, yf;j), are related by

o = G<a)y§2> with o = x,y (3)

w = el
in which the parameter Gi"f‘f) represents the effective shear modulus of the adhesive defined as
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Fig. 2. Bi-linear elastic material model for the adhesive.
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Fig. 3. Reference planes for kinematic relations of the patch, skin, and adhesive.

Furthermore, the transverse normal stress, ¢'*), and strain, ¢®, in the adhesive are related by

zz p74

ol = Egreld ()

in which E%) is the effective Young’s modulus expressed as
Egq =2Gg (1 +v%). (6)

The thicknesses of the skin and adhesive are uniform and denoted by 4 and 24, respectively. As
shown in Fig. 3, the patch can be tapered near the edges with a variable thickness 4#(x, y). Also shown
in Fig. 3 are the reference planes of the skin and patch, denoted by z¥ (d =s,p), and the fact that they
do not coincide with their mid-surfaces. The reason for the choice of an eccentric reference location is
apparent for the tapered patch because a flat plane exists only at its bottom surface. Although the mid-sur-
face of the skin could serve as a reference plane, the choice of its top surface as the reference plane leads to
simplified expressions for the transverse shear strain components in the adhesive. Due to the choice of these
eccentric locations for reference planes for the adherents, the material property matrix includes the material
coupling effects. As for the adhesive, its mid-surface, denoted by z®, serves as the reference plane in
describing the shear-lag model.

The problem posed here concerns the development of an analytical method to determine the displace-
ment and stress fields in the repair of a skin with a hole by bonding a tapered patch over it while including
the effect of geometric nonlinearity and bi-linear elastic adhesive material behaviors.

3. Solution method
The present nonlinear analysis method is based on the principle of virtual work in conjunction with a

Rayleigh—Ritz approach. The displacement components are approximated in terms of the superposition
of local and global functions, & and @", respectively, as

“ (7)

<l

W@ — 7@

o o
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with d = p, s and o = x,y,z. The local displacement functions, #(?), are expressed as Laurent series in terms
of complex functions in the form

2 Nay
9= 2Re|S a3 o0l (40)] )
L k=1 n=—Ng |
-, N i
@0 =ore|S a3 old (49) | )
L k=1 n=—Ny| |
& B ) (@
D =2Re|>" Y pUFL (zh,k)] (8¢c)
L k=1 n=—Ng
with
dy) = cosy'p? —siny g, (9a)
d;k) = siny@ pk )+ cosy qk (9b)

in Wthh the explicit definitions of complex functions &% (z)) and F\¥(z¥)) and the complex constants p.”

and qk are explicitly given in the Appendix A. The parameters N, and N, with d = p, s, define the extent
of the complex serles and the parameter N, is set to 0 because there is no cutout in the patch. In these
series, ocfl‘,i and /3 ¢ are the unknown complex coefficients. These local functions satisfy the in-plane and
bending equilibrium equations of a laminate exactly, as described by Madenci et al. (2001).

The global displacement functions, ‘< ), are expressed as a series in terms of Chebyshev polynomials in

reference to the global coordinates (x,y in the form

i ZZcmn ()T () (10)

m=0 n=0

in which cl(mn), with d = p, s and « = x, y, z, are the unknown real coefficients. The parameter M, specifies
the extent of the series.
These local and global displacement functions can be expressed in matrix form as

_ T
7@ = VO o) 7@ = v o
T
@) D" —@) oD
W=V o and g Vel (11a,b)
— ()T (T
i) =V g i =5

in which the vectors o and B contain the real and imaginary parts of the unknown coefﬁments o A) and

ﬁik , respectlvely The vectors ¢\@, with o = x, y, z, contain the real unknown coefficients ¢? . The known

vectors Va and Vi and their corresponding unknown coefficient vectors a® and p© are defined explicitly
in the Appendix A.
In matrix form, the approximate displacement representations given in Eq. (7) are rewritten as

u® = Vg
W) = Vg, (12)
U = V@' q@
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in which the known vectors V<d>, with o = x, y, z, are defined as

VO = {V 0} (13a)
@" _

VO = {V 0, V ) 0} (13b)

v = {0 0,0,V V" } (13¢)

In Eq. (12), the unknown vector ¢'? is defined as
@ _ [y @' (@ (@ p@)" @)T
q - {d acx ,Cy 7ﬂ ,CZ } (14)

Note that the series representation of the displacement components is not required to satisfy any type of
kinematic admissibility.

3.1. Kinematic relations

The patch and skin interact through the adhesive, which sustains transverse and shear deformations but
not in-plane deformation. Both the patch and skin are subjected to in-plane and transverse deformations
but not shear deformation. Also, the transverse normal and shear strain components are disregarded in
the patch and skin because they are thin. Therefore, the in-plane strain components in the adhesive and
the transverse normal and shear strain components in the patch and skin are not included in the derivation
of the kinematic relations.

In accordance with the Kirchhoff plate theory, the global displacement components, U, U'¥), and U¥,
in the patch and the skin are defined as '

U( >(x y,z) = g(d) (x,y) — C(‘l)h<d>u§f]£, (15a)
U (x,p,2) = u” (x,y) (15b)
for which d = p,s and o = x,y; the displacement components, u'¥), u¥), and u(?), are defined on the reference

surfaces with respect to the global Cartesian coordinates (x, y, z), (Flg 3). A subscript after a comma indi-
cates differentiation with respect to the variable. As shown in Fig. 3, the coordinate {'® located on each of
the reference planes is defined as

[ = ;Z with d = p, s (16)

and varies in the range —1{®® < 0 in the skin and 0 < {'® < 1 in the patch. The thicknesses of the patch and
skin are specified by 4®, and the location of the reference planes with respect to the global coordinate sys-
tem (x, y,z) are defined by =¥, with d =s, p, as shown in Fig. 3.

3.2. Strain—displacement relations

The strain measures for the skin and patch are based on the modified form of Green’s nonlinear strain—
displacement relations in conjunction with von Karman assumptions for large deformation of plates (Fung
and Tong, 2001). Therefore, the strain components in the skin and patch, ei‘z) (d=p,s; o, =x,y), are ex-
pressed in terms of the displacement components as
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2
o0 = ) — LRI, 4 3 () (172)
@ = ) _ @@ L) (17b)
Cy T Wy Yoy 2 Wy )
(d) _1 @ 4 2( 4= 1 u' @ (17 )
exy 2 u, y z xy 2 uzx zy " c

In accordance with the von Karman nonlinear plate theory, the out-of plane displacements are on the order
of the thickness, /', of the skin and patch and the derivatives of the in-plane displacement components are
much smaller than those of the out-of-plane displacement components. These expressions for the strain
components can be rewritten as

1 2
ew = el = (NI + 5 (ull))’, (18a)
1 2
) = o) — (OO + 1 (w2 (18b)
o0 = L Lo HORD ¢ 1 @, (18¢)
xy 2yxy 2 D zx Tz
in which
e =ul?), WD = —ul?), (19a,b)
() _ ) ) — )
Gy =ty Ky = g, (19¢,d)
yxy = uv‘ + uvx’ } 2u”y, (19e,f)

(@ ¢, and y(" represent the in-plane strain resultants and x(@, K(d , and k%) represent the bending

strain (curva'ture) resultants on the reference surfaces. Also, the in- plane and bendmg (curvature) strain
resultants constitute the components of the linear part of the in-plane strain, a(L ), and curvature, Kf , vec-
tors in the form

where &@

T

o = {8§§f>, G “/fj)} - {”(Quﬁd»)“(dy) + ”)(d)} .
T

K= (ool = { -l ), 28 -

Similarly, the nonlinear terms appearing in the strain components, e(;/’,) (o, f = x,), are included in the non-
linear part of the in-plane strain resultant vector, 9(N>, in the form

T 1 1
o0 = {5003 it} 21

Although the bending deformations (curvatures) are only linearly related to the out-of-plane displace-
ment component, u\¥), for consistency, a zero-valued vector is employed to represent the nonlinear part
of the curvature vector, K](f,’ ), as

«¥ = {0,0,0}. (22)
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Substituting for the derivatives of the displacement components from Eq. (12), the linear and nonlinear
parts of the in-plane strain resultant and curvature vectors can be expressed as

S(Ld) _ Lf::])q(d)v K<Ld> _ Lf;fq(‘”, (23a,b)
e = Lii) (q)q9, &9 =0, (23c,d)
where
v@'
d _ a)"
LY =1 v : (24a)
d)’ d)t
Ve + v
(@
d _ ;JT
L) =-| VY (24b)
(@
PATSS
and
vy
1 o
Lgi)(q(d)) =3 u%)Vid‘) . (24c)
WV Ve
The vectors of strain resultants defined in Eq. (23) can be combined in a compact form as
e =L¥Wq?  with a = L,N, (25)
where
egtd)T = {séd)T, Kid)T}, (26a)
L@
@ _ L
L = [L(") , (26b)
KL
L@ (q@
L (q¥) = | ™ E’q . (26¢)

Furthermore, the linear and nonlinear parts of the strain vectors, e<Ld) and egff), can be added to form the
total strain vector as

@ = el 4 e = [L(L‘” LY (q<d>)} q@ = B (q@)q®, (27)
where
B () =1 + LY (q). (28)

For the adhesive between the patch and the skin, the displacement components are assumed to vary linearly
through the thickness. In order to ensure displacement continuity among the patch, adhesive, and skin, the
displacement components for the adhesive are expressed as



E. Oterkus et al. | International Journal of Solids and Structures 42 (2005) 5274-5306 5283

, 1 1@

Uﬁgd) (X,J’az) = E [ngp) (xaya O) + US) (xvy, 0)] + 5 [Uip) (xvya O) - U§S) (xayv 0)} (29)
with « = x, y, z. Although the adhesive between the patch and skin undergoes the same magnitude of in-
plane and transverse displacements as those of skin and the patch, the strain measure is based on a linear
shear-lag model in which the transverse shear strain and the normal strain components in the adhesive are
expressed in terms of the displacements in Eq. (29) as

) = s U 0) = U, 0)] 45 [+ ENU w0 + (1= EN U8 r 0], (30)

) = (U 3) — U] (300)
with o = x,p. The expressions for the transverse shear strain components, 7% (x = x,y), are simplified to

ygi) = ﬁ [Ugf’)(x,y, 0) — Uf) (x, ¥, ())] (31)
under the assumption that

U > iU (o f=x:d =s.p) (32)

because the adhesive is an extremely thin layer.
Substituting for the displacement component evaluated at () = 0 for d = p, s (the reference surface loca-
tions of the adherents) leads to

I:urip) (xvy) - u(ﬁ) (xvy):l with o« = X, )5 (333)

o

(a) —
Yur = 24@

(a) _
bz = 2@

Finally, substituting from Eq. (12) for the displacement components in Eq. (33) leads to the strain vector
containing the transverse shear and normal strain components in the adhesive in matrix notation as

[ (x, ) — ul (x, )] (33b)

g@ = LPgq® _ LOgO, (34)
where
£ = (e ) (35)
and the matrices L” and L' are defined as
y@'
I
@ _ - (@) i =
ATy \s with d = p, s (36)
var

3.3. Stress—strain relations

The external in-plane loads acting along the boundary of the skin result not only in in-plane stresses but
also in bending moments in both the patch and skin due the eccentricity between the mid-surfaces of the
skin and patch and their interaction with the adhesive. The peeling stress in the adhesive is primarily
due to the bending deformations arising from this load eccentricity.
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The constitutive relations for both the skin and patch are based on the classical laminate theory, in which
the stress resultants and moments are related to the strain resultants and curvatures in the form
N® AS  B® e®
M® B® DO K®

s s)2 a s)? 52\ /)
k=1
D(s) _ lh(s)z - (C(S)3 _ C(S)Z)@(S)
ij = k+1 k ij(k)
k=1
with
‘ _ 50
C/@ S h(s)z (k=1,...,N, and 2z —n® <z <2V) (39)
and
N® B A(p)( y) B(P)( .y gP) 10
M® [ B®(x,y) D®(x,y k® [’ (40)
where
> (»)
A '(x,y) (Ckﬂ ) Dijiry»
k:l
®) 1o 2N (0P 0\ g
B;; (x,y) = ) (h (an’)) kzl (Ckﬂ =& )Qij(k)7 (41)
Lo IS (0 o\ AP
D;;’(x,y) g(h (x,)) 2 (CkH -4 )Qij(k)
with
o _ 2k(x,y) — 2 ®), 0 o )
G =—s—— (k=1,...,N, and zWzz® + "), (42)

AP (x, y)

In Egs. (37) and (40), the matrices A, D', and B (d = s, p) are associated with in-plane, bending, and
coupled in-plane and bending behaviors of the adherents, and Q(.j(k) (d =s,p) are the coefficients of the re-
duced stiffness matrix of the kth ply defined in the global x—y coordinate system. Note that the tapered
patch thickness, 2P, varies as a function of the (x—y) coordinates. Hence, the material property matrices
associated with the patch, AP, B” and D™, are dependent on the plane coordinates (x—y) while those
associated with the skin remain uniform.

Furthermore, the ratio of the ply thickness to the patch thickness is assumed to be constant, i.e.,
P (x,y)/h® (x,y) = 7P = constant. In this case, the material property matrices, A®, B®, and D™, become
dependent only on the patch thickness, A® (x, ).
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The relations given in Egs. (37) and (40) can be compacted in the form
s = EWe®  with d =p,s
in which s“, E and ' are defined as
s@" — {N<d>T7M<d>T}’

el — {£<d>T,K<d>T}.

5285

(44b)

(44c)

With the representation of e® in Eq. (27), the stress—strain relations given in Eq. (43) are re-expressed as

s — EWB@ (q@)q@,

(45)

Because the adhesive does not sustain any in-plane deformation the in plane stress components,
a?, %, and 6%, are disregarded. The transverse shear stresses, ¢{2) and ¢%), and the transverse normal

xx 7

stress, a( a)

s@ — g )a(d),
where

@' — @) @)
s@ = p@ {Yz,ayz,a },

s(a)T _ {y)(;)’ Vj,;i)v 82)},

Gar(@”,q") 0 0
E® (q(S) , q(p)) _ 0 G(a) (q(% q(P)) 0
0 0 Eiff (‘l ) q )

are related to the corresponding strain components through a b111near relation as

(46)

(47a)

(47b)

(47¢)

in which the expressions for G%(q¥,q®) = G (%) and E®)(q¥,q®) = E®(72)) are defined in Eqgs. (4)

and (6), respectively.

Substituting for the expression for £ from Eq. (34) permits the stress—strain relations given in Eq. (46)

to be expressed in terms of the unknowns of the skin and patch components as

s@ — g®@ (q(5)7 q(p)) (szp)q(p) _ L25>q(5)).

3.4. Boundary conditions

(48)

Along the ¢th segment of the skin boundary, z , as shown in Flg 1, the prescribed displacement com-

ponents norrnal and tangent to the boundary () f), and V4 #) and the slope normal to the bound-
ary (0 ) can be imposed as
u’@ — 030,
U = 030, )
U = 030,
i (
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Utilizing the vector representations of the displacement components given by Eq. (12), these prescribed
displacements can be expressed as

cos gb[Vf)Tq(S) 4 sin d)(V;s)Tq(s) _ 0z Z g,

n

—sin ¢, V' q® + cos d)[V;S)Tq(S) _ 09 — g,

50
VS)Tq“) _ (f)iéS) -0, (50)
cos qS[VSQTq(S> + sin q&[VS}),Tq(S) — il = 0.
These equations are rewritten in compact form as
T
Ve q¥ —al =0, (51)
where the matrix VES) and the vector i are defined as
ORI o8
cos ¢, VY +sin¢,V} 0
o7 —sin d)lV,(f)T + cos (l)ZV(,S)T 0
vy = g . (52)
0 V)
0 cos ¢, VE)' +sin ¢, V)
and
i = { 00 0z0 030 Oz } (53)

The boundary conditions in Eq. (51) are enforced as constraint conditions by introducing Lagrange mul-
tiplier functions, AS() (¢), with & = n, ¢, z, and Afj)(t), defined along the ¢th boundary segment. These bound-
ary conditions are written in integral form as

/F . Ags>(t){vgs>Tq<s> - ﬁé”} dr =0, (54)
where the matrix AES) contains the Lagrange multiplier functions in the form
A (1)
AV = wo- . (59
Az (1)

A (@)

The Lagrange multiplier functions A% (¢), with o =, 7, z, and A (¢) are defined in terms of Legendre poly-
nomials as

(A9 (1) AL (@) = Z (A 250 ) P&, (56)

where P; represents the jth-order Legendre polynomial and 4, with o = n, ¢, z, and /1;(2[) are the unknown

Lagrange multipliers associated with each Legendre polynomial, P, and boundary segment, I és).
Substituting the expressions for the Lagrange multiplier functions from Eq. (56) into Eq. (54) and rear-

ranging the terms, the constraint equations representing the prescribed displacements can be rewritten as
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AN(CPqY ) =0 with e=1,...L, 7
where
S T 2 (s T ST 1.8 T
W= ) ©8)
with
T 4 5 (s) 1 () 2/(5)
by = {’W((n[)’ Ak(tt) /“ks(zf)’ ’“;((zf) }’ (%)
ST ST ST ST
o =[cy g oyl (59b)
Y = / PV dr (60)
r®
and
O _ [T T ®)"
fe‘c - {f1s(zc)7 fzs([c)v T ffswc) (61)
with
67 NON
fj(lc) = /I:(s) Pju; dF (62)
l

The constraint equations in Eq. (57) can be assembled to form a single matrix equation combining all of the
constraint equations as

2T (CPqE —£9) = 0 (63)
where

A P (%

cY' = [Cgsf o Ciﬂv (64b)

0 = {1, ) (64c)

The system of constraint equations in Eq. (63) is unique, provided the rank of the matrix C* is equal to
the total number of constraint equations. Also, Eq. (63) can be treated as the potential energy of the reac-
tion forces producing zero energy since (C(S>q<s) — fgs)) =0, and it can be referred to as the potential energy
of the constraint forces, V., in the form

Ve =19 (COq® — £9) =0, (65)

3.5. Governing equations

The governing equations are derived based on the principle of virtual work as explained by Washizu
(1982)

SW; = SW, (66)
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where 3 W; and 3 W, represent the virtual work due to internal and external forces, respectively, of the re-
paired skin.

The internal virtual work, 3 W, is the sum of the internal virtual work of the skin, patch, and the adhe-
sive, 1.e.,

W, =W + w4 5w, (67)
where the internal virtual work in the patch, skin, and adhesive is expressed as
sw = / 5 s g = / 5e ) Eeld4  with d = p,s (68)
Aq Aq
and
s — / 5e@ @y — / 5@ EWg@ dg. (69)
Aq Aq

where 4, (d =p,s,a) denotes the areas of the skin, patch, and adhesive.
Substituting from Eq. (27) and (34) and with the property of S[Ll(\‘f)(q(d))]q(‘l) = ka) (q')6q9, the total
virtual strain vectors, 8¢ and e are obtained as

Se@ — 5q(p)TLflp) — 5q LS)T (70)
and

e = L 4 2L (¢9)]5q = "B (q))5q*, (71a)
where

‘BY(q) =L + 2L (). (71b)

The external virtual work is expressed as the sum of the virtual work due to externally applied forces,
5W§S>, and that arising from the boundary reaction forces, 5W£S>, 1.e.,

SWe=3W + w0, (72)

The virtual work due to externally applied forces, 5W§S), is obtained from
Wl = /F (S){Su)(f)tx + Sty + Sult. + dulm, + Sul’)m,}dr', (73)

where the external boundary of the skin is denoted by I', the applied tractions by 7, t,, and 7., and the
moments by m, and m,; their positive signs are shown in Fig. 1. Substituting for the displacement compo-
nents and their derivatives from Eq. (12) permits this expression in matrix notation as

Y = 5q0" p (74)
in which
T T T
p = {0 (75)
with
pe) = /F . {fo)tx +V_<;>ty}dr, (76a)

Pl — / VO VOV bar (76b)
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The virtual work due to the boundary reaction forces, 6ij), is identical to the first variation of the poten-
tial energy expression in Eq. (65) as

T

6W§S) =3V, = _S)L(S)T (C(S)q(S) _ fgs)) _ Sq(S)Tc(S) 26 (77)

The virtual work due to boundary reactions (constraint conditions) can be interpreted as the virtual work
of the constraint forces, 1), over the virtual displacements, 8(C® q'), of the skin and the virtual work of
the constrained dlsplacements (boundary conditions), C®q®®) — £ ) over the virtual constraint forces, 5.
Although the term (C¥q® — f)) is identical to zero, it is included in the virtual work expression in order to
obtain a complete set of equations that contain both equilibrium equations and constraint conditions.
Substituting from Eqgs. (68), (69), (74) and (77), the principle of virtual work from Eq. (66) is rewritten as

/6e dA+/8e dA+/6£

= q( _ SA )q(h) _ S ) _ Sq )»( ). (78)

Substituting for the strain vectors, e (d =s, p) and €®, from Eq. (27) and (34), and their virtual forms,
oe) (d=s, p) and 8¢'¥, from Eq. (70) and (71), and rearranging the terms, the virtual work expression is
recast into a compact form as

T p s T P
5q") (K(s) (q(s)) + Kg;) (q®, q“)))q(*) + 3qP (K<p) (q®) + K;j (q®, q@))q(l’)

s T
— 5q e (q(p), q(s))q<‘) _ gq(S) Ki;) (q(p)7 q(S))q<p)

= 5q9 p — 549" CYq) — 5q9"CO A 4 540 1) (79)
where
T
K@) = [ B @)EYBY () (@ =s.p). (50a)
Aq
K, (@, q%) = / LY EW(qP,q")Ldd (2, =s,p). (80b)
Aa

The principle of virtual work from Eq. (79) can further be rearranged and put into a more compact form
as

N T S S N T S S T S
g% ) | Ky(a™,q%) K, (q,q%) C% | (q" og® ) (p®
T T
B)L,(S)T C(S) 0 0 l(g) 6l(S)T fc
where

Kss(q(p),q(S)) — K® (q(S)) + Ki?) (q<p)7 q(S))’ (82a)
K, (q7,q%) =KP(¢®) + K" (q”,q"), (82b)
K, (q”,q%) = —K@(¢™,q"), (82¢)

Kps(q(p),q(s)) - _K® (q(p>7q(S)) — KT (q(p>7q(S)). (82d)

s



5290 E. Oterkus et al. | International Journal of Solids and Structures 42 (2005) 5274-5306

For arbitrary variations of the virtual solution vectors 8q®, 3q®, and 84", the solution to Eq. (81) is ob-
tained only if

T

KSS (q(p) , q(s) ) Ksp (q(p) , q(s) ) C(S) q(s) p(s)
c® 0 0 © f.

Note that the resulting governing equations are nonlinear and the matrices K(q'”, q*) and K, (', q"*)
are non-symmetric. The solution to this equation requires a nonlinear iterative solution technique that uti-
lizes LU decomposition. Therefore, the Newton—Raphson iteration method, in conjunction with Broyden’s
automatic Jacobian matrix update procedure, is employed.

The nonlinear equilibrium equation, Eq. (83), can be rearranged in the form

V() = K(q)q —f =0, (84)

where the vectors q and f and the matrix K(q) are defined as

q' = {q(S)T, q, WT}, (85a)

' ={p",0" 1}, (85b)
K.(q) Ky,(q) CV

K(q) = | K (@) K, 0 |. (85¢)
c® 0 0

The vector (q) represents the unbalanced load vector. Under equilibrium conditions, the solution vec-
tor q exactly satisfies Eq. (84) and no unbalanced forces exist. However, it is practically impossible to obtain
a direct solution of the nonlinear equilibrium equations. Instead, the solution is obtained by resorting to an
iterative procedure, such as the Newton—Raphson (N-R) method. In order to proceed with the N-R method,
Eq. (84) is rewritten in iterative form as

V(") = K(q, ), — £, =0, (86)

where ¢4 denotes the trial solution vector at load step m after k iterations, and it is expressed as a correc-
tion to the trial solution vector, q*, at the kth iteration at load step m, i.e.,

q"'=q, +Aq (87)

in which Aq represents the correction term (incremental solution vector). The solution vector ¢, is known
from the kth iteration at load step mand the correction term, Aq, is to be determined.
The Taylor series expansion of y(g**") about the known trial solution ¢, is
0

WG ) = (et + G )Ag + HOT =0 (58)
in which the unbalanced load vector (g ) is non-zero from the kth trial solution vector, ¢/ . Retaining the
linear terms in the expansion while disregarding the higher-order terms (HOT), the Newton—Raphson (N-
R) method yields

J(q,)Aq = —V(q;,), (89)



E. Oterkus et al. | International Journal of Solids and Structures 42 (2005) 5274-5306 5291

where the Jacobian matrix, J(q’ ), is defined as

v

J(‘lfn) —a

A K  ,
(@) = 54 (@0, +K(q,) (90)
and
Aq=q," —q,. 1)
Because of the linearization of Eq. (88), the incremental solution vector (the correction term), Aq, ob-

tained from Eq. (89) is not expected to yield the actual solution. However, it provides a good estimate
of ¢**! in the form

q" =q, I ()v(d,). (92)

As part of the iterative solution procedure, this recursive relationship requires the updated Jacobian matrix,
i.e., J(¢*t"), which is obtained based on Broyden’s algorithm (Geradin et al., 1981)

[AY — J(q})Aq]Aq"

J(g,) = JI(q;,) + AqTAq , (93)
where
AV = W(q,") — W(d),). (94)

At the beginning of the current (mth) load step, the converged solution vector, ¢*,_,, and the Jacobian ma-
trix, J(q*,_,), computed from the previous load step are employed as the initial estimates for the solution
vector and the Jacobian matrix in the current load step, i.e.,

qu = qlr{n—l =4q, and J(q&) = J(ql;z—l) = J(qm71)7 (953’ b)

where the superscripts on the right-hand sides of Eq. (95a, b) are removed to represent the converged solu-
tions from the preceding load step.

Note that for the case of k = m = 0 (i.e., ) = 0), the Jacobian matrix J(q) = 0) represents the linear stiff-
ness matrix at the unloaded state of the patch-repaired skin, i.e.,

J(q5 = 0) =K(q” =0.q¥ = 0) = K,. (96)
Therefore, the initial solution vector and the Jacobian matrix in the first load step are estimated by

¢! =0 and J(q)) =K. (97)

4. Numerical results

Before demonstrating the applicability of the present approach, its validity is established first by com-
parison against the experimental measurements for an untapered patch 6 =0 presented by Barut et al.
(2002). Then, its applicability is demonstrated by considering two patch-repair configurations. The first
configuration is a tapered aluminum patch bonded over a circular cutout in an aluminum skin with a linear
elastic adhesive material. The second configuration is an untapered composite patch bonded over a circular
cutout in a composite skin with a bi-linear elastic adhesive material.

Arising from the presence of symmetry in geometry and loading for both the validation and demonstra-
tion cases, the displacement component, a7, is symmetric in the x-direction while asymmetric in the

x °
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y-direction and barﬂ;q) is asymmetric in the x-direction while symmetric in the y-direction. Also, 172") is sym-
metric in both directions. In order to take advantage of these symmetry conditions along the centerlines, the
global functions in Eq. (10), 175"), with i = x, y, z, are chosen as either odd or even terms of the Chebyshev
polynomials in the form

=la) _ S S (@)
v = o In () Tu (), (¢ =s,p) (98)
m=0246... n=1357
My m
0 = Y. T

m=024,6... 1=0246...

In the skin, both in-plane and transverse displacement fields are approximated by complex potential
functions of order 5 (i.e., Np = N, =5) and Chebyshev polynomials of order M, = 24, thus leading
to a total of 321 generalized coordinates (unknowns). Due to the absence of a cutout in the patch, the

N,
[T |
w ==t ,=0 ]
6;(Ply orientation)
L
* W
i
L
T _AX \?1
i) W |% 3
¥
£ 281
1
€
U, =t =, =0
=
Ny

Fig. 4. Geometric parameters and loading of the skin with a circular cutout repaired by bonding a square patch.
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displacement components are represented by only Chebyshev polynomials of order M, =24, (ie.,
N> = Np; = 0), thus introducing an additional 273 generalized coordinates and increasing the total number
of unknowns to 638. In order to apply the clamped bending boundary conditions along the loaded edges,
the reaction forces associated with the transverse deflection and the slope normal to each boundary segment
are represented by 10-term Legendre polynomials, thus resulting in a total of 40 constraint equations. Addi-
tional constraint equations are also used to suppress the rigid-body motion of the skin and to ensure single-
valuedness of the transverse deflection associated with the complex functions, (Madenci et al., 2001).

In both validation and demonstration cases, the skin is subjected to a uniform tension of Ny =0 to
N§® =200 Ib/in. in 10 equal load increments along the horizontal edges, as illustrated in Fig. 4. Also, these
edges are clamped in order to suppress the bending deformations. The vertical edges are free of any traction
or kinematic boundary conditions. For each load step, the solution is obtained through a Newton-Raphson
iteration procedure with Broyden’s automatic stiffness (Jacobian) matrix update.

As shown in Fig. 4, the skin has a rectangular geometry, with its length and width specified by L; = 10 in.
and W, =4 in., respectively. The circular cutout at the center of the skin has a diameter of d = 0.75 in. The
patch is square, with a length of W, =1.125in. The thickness of the adhesive bond is specified as
2h, = 0.0025 in.

The Young’s modulus and Poisson’s ratio for aluminum are E = 10.2 x 10° psi and v = 0.33, respec-
tively. As shown in Fig. 2, the parameters describing the bi-linear adhesive material behavior are specified
as G\ = 60 x 10° psi, G = 0.5G\, and y® = 0.005 in./in., and it has a Poisson’s ratio of v® = 0.34.

4.1. Validation
The validation is achieved for two different skin-to-patch thickness ratios. Both the skin and patch are
made of aluminum. For the first case, the skin and patch have uniform thicknesses of 4; = 0.088 in. and

h, =0.024 in., respectively, and the second case has /s = 0.0635 in. and &, = 0.049 in. The patch is unta-
pered with 6 = 0. The comparison of the predictions against the experimental measurements presented

VS
>

-5
4

Fig. 5. A typical deformed configuration of the aluminum skin repaired by bonding an aluminum patch at a load level of
No/NP® = 0.5.
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Fig. 6. Comparison of present analysis predictions against strains measured on the patch, near and away from the cutout for skin-to-
patch thickness ratio: (a) 3.67 (b) 1.3.
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by Barut et al. (2002) establishes the validity of the present approach. A typical deformed configuration
corresponding to a load step of No/Ng** = 0.5 is shown in Fig. 5 for the aluminum skin repaired by bond-
ing an aluminum patch. The comparison of the predicted and measured strains on the patch, near the cut-
out and away from the cutout on the skin shows remarkable agreement as shown in Fig. 6.
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Fig. 7. The aluminum skin repaired by bonding an untapered aluminum patch at varying load levels of No/Ng**: (a) transverse
displacements, —u® /h, and —u® /h, and (b) in-plane stress resultants, N /N and N®)/N™ at point (x = 0,y = 0.35).
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4.2. Demonstration

For the two demonstration configurations, the aluminum skin has a uniform thickness of 4y = 0.04 in.
As shown in Fig. 4, the tapered length of the patch, denoted by 4, is varied from 0 to 0.35 in. in equal incre-
ments of 0.05 in. The thickness of the tapered patch, &, (x,y), is defined by

hy(=W,/2 40 < x < Wp/2 = 0)

hoey) = 4 b= =W 24 0)(x = Wy/2-0) (99)

b+ 1 (e W02 = 6) (e < W, /2 4 0)

The quasi-isotropic composite skin has a stacking sequence of [45/—45/0/90/90/0/—45/45],. The patch is

an angle-ply laminate with a stacking sequence of [0/—0],,, where 0 varies between 0° and 90° in incre-
ments of 5°. The patch has 8 plies and its thickness is half that of the skin. The ply thickness is specified

N(S) N(.ﬂ)
xx

© @

Fig. 8. Contour stresses in the aluminum skin repaired by bonding an untapered aluminum patch at a load level of No/N{™* = 1: (a)
In-plane stress resultant, N fx), in the skin; (b) in-plane stress resultant, N 93, in the patch; (c) transverse shear stress, a}jz’), in the adhesive
and (d) transverse normal stress, ¢, in the adhesive.

5 O
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as 0.0025in., and its material properties are specified as Ep = 18.5x 10° psi, Et= 1.64 x 10° psi,
Gyt =0.87x10° psi, and vyt = 0.3. The subscripts ‘L’ and “T” denote the fiber and transverse directions,
respectively.

4.2.1. Configuration I
The first configuration is a tapered aluminum patch bonded over a circular cutout in an aluminum skin
with a linear elastic adhesive material. Corresponding to each load increment, the variation of normalized
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Fig. 9. The aluminum skin repaired by bonding a tapered aluminum patch at a load level of N,/N3** = 1 for varying taper lengths of
8/hy: (a) transverse displacements, —u®) /h and (b) in-plane stress resultants, NO /NT at point (x = 0,y = 0.35).
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transverse displacement components in the skin and patch, —u® /h; and —ulP) /hg, at the point of peak val-
ues (x =0, y=0.375 in.), is shown in Fig. 7a. As observed in this figure, the transverse displacements of the
patch and skin are on top of each other because the peeling strains, which cause the only difference, are
rather small.

As shown in Fig. 7a, the difference in transverse displacements between the linear and nonlinear analyses
is significant. The magnitude of the transverse displacement obtained from the nonlinear analysis (12.5% of
the skin thickness) is primarily due to the excessive stiffening of the patch and the skin arising from the ap-
plied in-plane tension. As a result, the stress stiffening of both the skin and patch tends to prevent the bend-
ing deformations arising from the eccentric in-plane loading.

For each load increment, the variations of the normalized in-plane stress resultants, N/ /N and
NP /NDax - at the point (x =0, y = 0.375 in.) are shown in Fig. 7b. In order to elucidate the effect of the
nonlinear analysis, this figure includes the results of both the linear and nonlinear analyses. The deviation
of in-plane stress resultants between the nonlinear and linear analyses is not as significant as the deviation
between the nonlinear and linear transverse displacements shown in Fig. 7a. This is expected because the
applied tension must be balanced by in-plane stresses in the skin and patch in order to satisfy the equilib-
rium of the patch-repaired skin. As shown in Fig. 7b, the nonlinear in-plane stress resultant, N, in the skin

is lower than that of the linear analysis while the nonlinear stress resultant, N\, in the patch is higher than
its linear counterpart, indicating that the patch tends to compensate for any drop in the in-plane stress
resultant in the skin in order to maintain equilibrium.

The three-dimensional contour plots of the in-plane stress resultant, N,,, in the skin and patch at load
step No/Ng®* = 0.5 are shown in Fig. 8a and b. As shown in these figures, the present analysis captures the
stress concentrations near the circular cutout under the patch. As shown in Fig. 8a, the patch reduces the
stress intensification by about 30% from the well-known stress concentration of 3N,. Also, the transverse
shear and peeling stress distributions in the adhesive at the fifth load increment (i.e., No/Ng** = 0.5) are

shown in Fig. 8¢ and d. As shown in these figures, the present analysis captures the shearing and peeling
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Fig. 10. The aluminum skin repaired by bonding an tapered aluminum patch at a load level of No/N{** = 1 for varying taper lengths
of 8/hy: (a) transverse shear stress, q@, in the adhesive and (b) transverse normal stress, ¢\, in the adhesive at the mid-point of the
adhesive edge.
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stress concentrations near the edges and the cutout, and the transverse shear stress component, ¢!*), has an

xz ?

asymmetric and the peeling stress, ¢, has a symmetric distribution. Around the hole boundary, the shear
stress, o, reaches the peak values around +45° and +135°. The peeling stress, ¢@), reaches the local peak
value at 90° and 270° around the hole boundary.

The effect of taper length, J, on the out-of-plane displacement and in-plane stress components of the skin

at the point (x =0, y =0.375) is shown in Fig. 9. The out-of-plane displacement slightly decreases with
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Fig. 11. The composite skin repaired by bonding an untapered composite patch at varying load levels of Ny/Ng**: (a) transverse
displacements, —u® /h; and —u® /h, and (b) in-plane stress resultants, N /N and N®)/N™ at point (x = 0,y = 0.35).
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increasing taper length while the normal stress component, N _S(), slightly increases. This behavior is expected
because the increase in taper length reduces its in-plane and bending stiffnesses. This stiffness loss in the
tapered patch, therefore, causes coupling between the skin and patch that is weaker than that of a skin with
an untapered patch. Furthermore, the skin has to carry more load in the overlapped region in order to pre-
serve equilibrium.

As shown in Fig. 10, the major benefit of an increasing taper length is for the reduction of the stress

concentrations near the edges in the adhesive. Both the peeling and shearing stresses, evaluated at the
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Fig. 12. The composite skin repaired by bonding an untapered composite patch at a load level of Ny /Ny** = 1 for a varying angle-ply
layup parameter, 0: (a) transverse displacements, —u /A and —u{P) /h, and (b) in-plane stress resultants, N /N™* and NP) /ND* | at
point (x =0, y =0.35).
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mid-point of the edges perpendicular to the loading direction, reduce considerably with increasing taper
length. The reduction in shearing stress is more significant than that of the peeling stress in comparison
to that of the untapered patch.

4.2.2. Configuration I1

The second configuration is an untapered composite patch bonded over a circular cutout in a composite
skin with a bi-linear elastic adhesive material. For a 30° angle-ply patch layup and a quasi-isotropic skin,
the variation of the normalized out-of-plane displacement, u., and the normalized in-plane stress, N, /Ny,
evaluated at point (x =0, y = 0.375) under increasing uniform tension is shown in Figs. 11a,b. In these fig-
ures, the dashed and solid lines denote the geometrically nonlinear analyses with bi-linear (GN and BL) and
linear (GN and LE) adhesive material behavior. The solid line with hollow circles denote the geometrically
linear analysis results with linearly elastic adhesive material properties.

As observed in Fig. 11a, the stiffening effect due to in-plane loading has a significant effect on reducing
the out-of-plane displacement of both the patch and the skin. The stiffening effect arising from the non-
linear strain measure reduces the deflections by almost two-thirds that of the linear analysis. Further-
more, there is a considerable difference in the in-plane stress resultants, N, /N, between the linear
and geometrically nonlinear analyses, as observed in Fig. 11b. However, the decrease in the in-plane
stress resultant in the skin due to geometrically nonlinear effects is compensated for by an increase in
the patch.

The effect of angle-ply patch layup on the out-of-plane displacement and in-plane stress components is
captured in Figs. 12a,b. Both the in-plane displacement and in-plane stress resultant components are eval-
uated at point (x =0, y = 0.375). As shown in Fig. 12a, the out-of-plane displacements of both the skin
and patch reduce as the patch layup parameter, 0, changes from 0° to 90°. It reaches the maximum at the
0° angle-ply layup and becomes minimum at the 90 angle-ply layup. This figure also indicates that the
coupling between the skin and patch decreases as the in-plane and bending stiffnesses of the patch
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Fig. 13. The composite skin repaired by bonding an untapered composite patch at a load level of Ny /N{** = 1 for a varying angle-ply
layup parameter, 0: (a) transverse shear stress, ¢/, in the adhesive and (b) transverse normal stress, ¢, in the adhesive at the mid-
point (x =0, y = 0.35) of the adhesive edge.
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decreases in the loading direction. Shown in Fig. 12b, this effect is also apparent by the behavior of the
skin. It tends to carry more in-plane load as the in-plane stiffness of the patch becomes weaker in the
loading direction.

Although the bi-linear material behavior of the adhesive has an insignificant effect on the overall re-
sponse of the patch and skin, its effect on the response of adhesive stresses along the edges of the adhesive
is considerable, as shown in Fig. 13. Also, the change in the angle-ply patch layup parameter, 0, reduces the
shearing stresses considerably while influencing the peeling stress slightly.

As shown in Fig. 14, the influence of the bi-linear material response on the effective shearing strain in the
adhesive is illustrated through four load steps of No/Ng** = 0.3,0.5,0.8,1.0. In this figure, the light and
dark areas represent the regions where the effective shearing strains are, respectively, below and above
the characteristic value of 7). As expected, the shearing strains start to exceed the critical value at the cor-
ners and near the cutout in the adhesive first and then grow towards the interior of the adhesive domain as
the applied load increases.

NIN™=0.3 N,INI®=0.5

e aa o

(a)
N,IN" = 0.8
(c) (d)

Fig. 14. Distribution of effective shear strain in the adhesive at load steps of No/Ny** =0.3,0.5,0.8, 1.0.
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5. Conclusions

A geometrically nonlinear analytical approach for determining the stress and displacement fields in a
bonded patch-repaired skin with a circular cutout is presented. This approach accounts for the presence
of tapered patch geometry and stacking sequence, as well as the linear and bi-linear elastic material behav-
iors. It captures the in-plane stress concentrations near the cutout and the stress concentrations in both
transverse shear and peeling stresses near the corners while including the stiffening effects in both the skin
and patch arising from in-plane tensile loading.

The stiffening of both the skin and patch significantly reduces the out-of-plane displacement. Although
noticeable, the effect of geometric nonlinearity on the in-plane stress response of both the patch and skin is
not considerably large. Any decrease in the in-plane stress distribution in the skin causes an increase in the
in-plane stress distribution in the patch.

The tapered patch geometry slightly changes the response of the patch and the skin but considerably
reduces the peeling and shearing stress concentrations near the edges of the adhesive. As the angle-ply
parameter, 6, of the patch layup increases, the in-plane and the bending stiffnesses of the patch decrease
in the loading direction. Therefore, the skin carries more load, thus experiences higher in-plane stresses.
Therefore, as the angle-ply parameter, 0, of the patch layup increases, the skin carries more load and expe-
riences higher in-plane stresses because of the reduction of the in-plane and bending patch stiffnesses in the
loading direction.

Also, the coupling between the skin and patch is reduced due to the stiffness loss of the patch in the load-
ing direction. As a result, the out-of-plane displacements of both the skin and patch decrease as the angle-
ply layup parameter increases. In the adhesive, the increase in this parameter mainly reduces the shearing
stresses and slightly changes the peeling stresses.

The bi-linear adhesive material behavior has almost no effect on the overall behavior of the patch and
skin. In the adhesive, however, both shearing and peeling stresses reduce considerably in the areas where
the shearing strains go beyond the characteristic value of the bi-linear behavior.

Appendix A

The complex potential functions, (D ( ) with ¢ = s,p, appearing in Eq. (8) are defined as
@) (=) = (&))", (A.1a)

(DSZ) (Z(P)) - (Z(P))". (A.1b)

ek ek

The mapping functions ii,i), first introduced by Bowie (1956), map a cutout onto a unit circle. In this analysis,
the mapping functions for an elliptical cutout, introduced by Lekhnitskii (1968), are employed in the form

2 2
LA ) e ()
éslsc = B
—1 (uii)) b

in which 2 k =X, + ,u% yq(q =s,p) and a and b are the major and minor axes of the elliptical cutout, with
I =+/—1. The sign of the square root term is chosen so that | fsk | 1.
Inverting the mapping function provides wgk)(é( )) as

S
20 = o (e) =racld - 55 (A3)
ek

(k=1,2) (A.2)
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in which
1 () 1 )
ok zi(a—l,ugkb), Sek :E(a +1u,'b). (A.4)
The unkn(o;zvn complex constants, ,u(1 and ,u‘92 (q =s,p), and their complex conjugates, i.c., ,ugg = ,u§3)

and ,u£4 =02, are the roots of the characteristic equation obtained from the in-plane compat1b1hty
condition

i (1)) =2 () + (26 + ) () = 2000 + i) =0 (A5)
in which the coefficients a,]( % are components of the flexibility matrix a’?, which is the inverse of the in-
plane stiffness matrix, A’?. Both the flexibility and the stiffness matrices, a’(q) and 4’9, are measured with
respect to the local coordinate system (x,,y,). The angle Y9 represents the orientation of the local coordi-
nate system with respect to the global coordinate system. Thus, the components of A"“’ can be directly ob-
tained by transforming the components of the in-plane stiffness matrix, A, defined in the global system
through the orientation angle. This transformation relation is available in any textbook on composite mate-
rials. Also, the complex constants, p,(f) and q,iq), in Eq. (9) are defined as

1(q)

Pl(cq) = 911)(/%1( ) + ‘112 - ‘116)/‘£k)7 (A.6a)

) = a9+l . (A

The complex functions, Fnk (z Kk) appearing in the expression for the local functions, #%), with ¢ ='s,p, in
(8c) are defined as

Pk (o(s)\n _ Sik (s)\n—2 >
n (éck) }172(5;{]() ) n /3
(s)\2
%_Sﬂc In éfcsk)7 n=2
F) ) =4 @y, n=0.1, (A7a)
(s)\—2
rn &) o SsxlSg) ne 1
nr—;ic_kl (éKSk))n+l _ nsikl (éi(csk))nfl’ n< =2
FPEE) = (7)) withn >0 (A.7b)

in which the expressions for the mappmg function, é,ck , and the constants, r, and s, are respectively, in
the same form as the expressions for étk, re, and s., except that the subscript ¢ is replaced by x.
In Eq. (A.7a,b), the complex variables 29 with q =s,p, are defined in the form

xk >

29 = x4+ 1l (A.8)

in which the unknown complex constants, ,u(K"f and ,uf:’;, and their conjugates are obtained from the bending
equilibrium equations for an unpatched plate

Dy <u,ck> + 4D (1)) + (2D + 4D (14))? + 4D u) + DY = 0, (A9)

where D are the components of the bending stiffness matrix D), which is defined with respect to the
local coordlnate system (x,, y,). The bending stiffness matrix, D''9, can be directly obtained from the trans-
formation of matrix D'’ defined in the global coordinates. This transformation relation is available in any
textbook on composite materials.
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The local vector of complex interpolation functions, Viq) (¢ =x, y, z), appearing in Eq. (11) are defined

as
v _ [ " <@ <@ }
VO =V LV e Vv
with
<@" @ @’
Va(,,) = {Vx(n])ava(nz)} (g=s,p;a=x,y)
in which
AT
Viiw = {2Re|df @) —2m[df 0|} (g =s.pia=xrik=12)
and
v _ o0 o@” @' @' }
VZ - {V(qu Vz(qu—l)’ ) Vz(n)’ ) Vz(qu)
with
v _ [ o@T _
Vi = {Vz(n1)7 Vz(nZ)} (g =s,p)
in which

T
Vi = {2Re[F], —2m[F]} (g =s.pik=1,2).

The corresponding vectors of unknown coefficients, o' and ', are defined in the form

@" — (@)" @ T (@'
ald —{ Ny Oy e ATl
in which
T T T
A = {4y}
with

and
() — )T )T T (g)"
ﬂq - {BS\‘II(]] ’ ﬁg\?ql+17 ) ﬁ(q> ’ ’ ﬂ]\?qz }
in which
( )T _ T T
= { me' )
with

o — {Re [ﬂﬁ‘i)}a Im [ﬁiﬂ }

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

. . . Sl . .
Also, the vector of global interpolation functions, V, (o = x,y,z), and their associated unknown vectors,

cl?, in Eq. (11a,b) are defined as
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="
Va :{TOO(xay); TIO(xay)a T01(X,y); T20(X,y), Tll(xay)a TOZ(xay)ﬂ SRR} TOMq(xvy)}
(A.22)
in which Ti(x,y) = T{x)T{y) and
CI - {czx()Ov Cy105  Ca0ls  Cx205  Cally  Cu02, ey CocOM,] } (A23)
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